87 research outputs found

    Using a Smart City IoT to Incentivise and Target Shifts in Mobility Behaviour-Is It a Piece of Pie?

    Get PDF
    The work presented in this paper is a central part of the research and development in the SUNSET project (contract No. 270228), supported by the 7th Framework Research Program funded by the European Commission. The authors also acknowledge the support of other SUNSET consortium members in helping to create and evaluate the SUNSET tripzoom system

    Ru Nanoparticles Supported on MIL-101 by Double Solvents Method as High-Performance Catalysts for Catalytic Hydrolysis of Ammonia Borane

    Get PDF
    Highly dispersed crystalline Ru nanoparticles (NPs) were successfully immobilized inside the pores of MIL-101 by a double solvents method (DSM). HRTEM clearly demonstrated the uniform distribution of the ultrafine Ru NPs throughout the interior cavities of MIL-101. The synthesized Ru@MIL-101 catalyst was also characterized by X-ray diffraction (XRD), N2 adsorption desorption, and ICP-AES. The catalytic test indicated that the Ru NPs supported MIL-101 material exhibited exceedingly high activity and excellent durability for hydrogen generation from the catalytic hydrolysis of amine boranes

    The Genome of Ganderma lucidum Provide Insights into Triterpense Biosynthesis and Wood Degradation

    Get PDF
    BACKGROUND: Ganoderma lucidum (Reishi or Ling Zhi) is one of the most famous Traditional Chinese Medicines and has been widely used in the treatment of various human diseases in Asia countries. It is also a fungus with strong wood degradation ability with potential in bioenergy production. However, genes, pathways and mechanisms of these functions are still unknown. METHODOLOGY/PRINCIPAL FINDINGS: The genome of G. lucidum was sequenced and assembled into a 39.9 megabases (Mb) draft genome, which encoded 12,080 protein-coding genes and ∼83% of them were similar to public sequences. We performed comprehensive annotation for G. lucidum genes and made comparisons with genes in other fungi genomes. Genes in the biosynthesis of the main G. lucidum active ingredients, ganoderic acids (GAs), were characterized. Among the GAs synthases, we identified a fusion gene, the N and C terminal of which are homologous to two different enzymes. Moreover, the fusion gene was only found in basidiomycetes. As a white rot fungus with wood degradation ability, abundant carbohydrate-active enzymes and ligninolytic enzymes were identified in the G. lucidum genome and were compared with other fungi. CONCLUSIONS/SIGNIFICANCE: The genome sequence and well annotation of G. lucidum will provide new insights in function analyses including its medicinal mechanism. The characterization of genes in the triterpene biosynthesis and wood degradation will facilitate bio-engineering research in the production of its active ingredients and bioenergy

    Extension and Dynamics of the Andes inferred from the 2016 Parina (Huarichancara) Earthquake

    Get PDF
    The M w 6.1 2016 Parina earthquake led to extension of the south Peruvian Andes along a normal fault with evidence of Holocene slip. We use InSAR, seismology and field mapping to determine a source model for this event and show that extension at Parina is oriented NE-SW, which is parallel to the shortening direction in the adjacent sub-Andean lowlands. In addition, we use earthquake source models and GPS data to demonstrate that shortening within the sub-Andes is parallel to topographic gradients. Both observations imply that forces resulting from spatial variations in gravitational potential energy are important in controlling the geometry of the deformation in the Andes. We calculate 9 the horizontal forces per unit length acting between the Andes and South America due to these potential energy contrasts to be 4 − 8 × 10 12 N per metre along-strike of the mountain range. Normal faulting at Parina implies that the Andes in south Peru have reached the maximum elevation that can be supported by the forces transmitted across the adjacent foreland, which requires that the foreland faults have an effective coefficient of friction <0.2. Additionally, the onset of extension in parts of the central Andes following orogen-wide compression in the late Miocene suggests there has been a change in the force balance within the mountains. We propose that shortening on weak detachment faults within the Andean foreland since ∼5-9 Ma reduced the shear tractions acting along the base of the upper crust in the eastern Andes, leading to extension in the highest parts of the range

    Genetic and phylogenetic relationships analysis of the complete chloroplast genome Cucumis sativus to China

    No full text
    Cucumber, Cucumis sativus is one of the most cultivated vegetables in the world, which is mostly consumed raw in China. The complete chloroplast genome of C. sativus was assembled and annotated in this study. Its size was 155,525 bp, containing a large single-copy region of 86,878 bp, a small single-copy region of 18,269 bp and a pair of IR regions of 25,189 bp. Whole chloroplast genome of C. sativus contains 131 genes, including 77 protein-coding genes (PCGs), 46 transfer RNA genes (tRNAs), and 8 ribosome RNA genes (rRNAs). The overall nucleotide composition is: A of 31.1%, T of 31.9%, C of 18.8% and G of 18.2%, with a total GC content of the chloroplast genome 37.0% and AT of 63.0%. Genetic and phylogenetic analysis based on 10 plants species confirmed the position of C. sativus closely related to Cucurbitaceae species of Cucumis hystrix

    An Enhanced Feature Extraction Network for Medical Image Segmentation

    No full text
    The major challenges for medical image segmentation tasks are complex backgrounds and fuzzy boundaries. In order to reduce their negative impacts on medical image segmentation tasks, we propose an enhanced feature extraction network (EFEN), which is based on U-Net. Our network is designed with the structure of feature re-extraction to strengthen the feature extraction ability. In the process of decoding, we use improved skip-connection, which includes positional encoding and a cross-attention mechanism. By embedding positional information, absolute information and relative information between organs can be captured. Meanwhile, useful information will be strengthened and useless information will be weakened by using the cross-attention mechanism. Our network can finely identify the features of each skip-connection and cause the features in the process of decoding to have less noise in order to reduce the effect of fuzzy object boundaries in medical images. Experiments on the CVC-ClinicDB, the task1 from ISIC-2018, and the 2018 Data Science Bowl challenge dataset demonstrate that EFEN outperforms U-Net and some recent networks. For example, our method obtains 5.23% and 2.46% DSC improvements compared to U-Net on CVC-ClinicDB and ISIC-2018, respectively. Compared with recent works, such as DoubleU-Net, we obtain 0.65% and 0.3% DSC improvements on CVC-ClinicDB and ISIC-2018, respectively

    Janus WSSe Monolayer: An Excellent Photocatalyst for Overall Water Splitting

    No full text
    Stable photocatalysts with excellent optical adsorption and low reaction barrier are the key for the water splitting. Here, we find that a two-dimensional Janus WSSe monolayer possesses the compelling photocatalytic properties from density functional theory simulations, which can be well modulated with strain deformation. Comprehensive investigations indicate that the Janus material not only exhibits strong optical absorbance in the visible spectrum, suitable band edge potentials, high carrier separation, and transfer efficiency but also has adequate driving forces of photoexcited carrier for water redox reaction and good resistance against photoinduced corrosion. Janus WSSe is therefore predicted to be a promising photocatalyst for water splitting. Moreover, we also find that tensile strains could further improve the photocatalytic performance for water splitting by effectively increasing the energy conversion efficiency and reducing the exciton binding energy. Our results not only predict a photocatalyst, which can utilize the visible light for overall water splitting, but also propose an effective path to extend the absorption spectra and raise the photocatalytic efficiency.</p

    Two-dimensional Janus van der Waals heterojunctions: A review of recent research progresses

    No full text
    Two-dimensional Janus van der Waals (vdW) heterojunctions, referring to the junction containing at least one Janus material, are found to exhibit tuneable electronic structures, wide light adsorption spectra, controllable contact resistance, and sufficient redox potential due to the intrinsic polarization and unique interlayer coupling. These novel structures and properties are promising for the potential applications in electronics and energy conversion devices. To provide a comprehensive picture about the research progress and guide the following investigations, here we summarize their fundamental properties of different types of two-dimensional Janus vdW heterostructures including electronic structure, interface contact and optical properties, and discuss the potential applications in electronics and energy conversion devices. The further challenges and possible research directions of the novel heterojunctions are discussed at the end of this review.</p
    • …
    corecore