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Ru Nanoparticles Supported on MIL-101 by
Double Solvents Method as High-Performance Catalysts for
Catalytic Hydrolysis of Ammonia Borane
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Highly dispersed crystalline Ru nanoparticles (NPs) were successfully immobilized inside the pores ofMIL-101 by a double solvents
method (DSM). HRTEM clearly demonstrated the uniform distribution of the ultrafine Ru NPs throughout the interior cavities of
MIL-101. The synthesized Ru@MIL-101 catalyst was also characterized by X-ray diffraction (XRD), N

2
adsorption desorption, and

ICP-AES.The catalytic test indicated that the Ru NPs supported MIL-101 material exhibited exceedingly high activity and excellent
durability for hydrogen generation from the catalytic hydrolysis of amine boranes.

1. Introduction

Renewable and clean energy is believed as a long-term
solution to replace the current prevalent petroleum energy.
Recently, hydrogen receives much attention as a next-
generation energy carrier [1–3]. Amine boranes (NH

3
-BH
3
,

AB) appears to be a suitable hydrogen source, because of its
rich hydrogen content, high stability, and nontoxicity [4–7].
The hydrogen stored in AB can be released through the
hydrolysis of AB in the presence of a suitable catalyst accord-
ing to the reaction (1). So far, various catalysts have been
developed for the catalytic hydrolysis of AB to generate
hydrogen, such as Pt-based catalyst [8] and Ru-based catalyst
[9]. Ru-based catalyst showed significant advantages in
hydrogen generation fromAB.However, the balance between
costs, efficiency, and recyclability still remains a considerable
challenge:

NH
3
-BH
3
(aq) + 2H

2
O (I)

catalyst
󳨀󳨀󳨀󳨀󳨀→ NH

4
BO
2
(aq) + 3H

2
(g)

(1)

Porous metal-organic frameworks (MOFs) have emerged as
a class of promising functional porousmaterials, especially in

the applications of gas storage catalysis, separation, sensing,
and drug delivery [10–13]. Taking advantages of their high
specific surface area and tunable pore size, efficient solid
catalysts can be achieved by loading MNPs inside the porous
MOFs. It is reported that two approaches are used for the
synthesis of MNPs inside MOFs. The first and most widely
used approach is to use MOFs as stabilizing host material,
which provides a confined space for nucleation, such as
chemical vapor deposition [14], solution infiltration [15–
17], and solid grinding [18]. However, it seems difficult to
completely avoid the precursor compounds and product
aggregation on the external surface of MOFs. Therefore, a
double solvents method (DSM) has been reported to incor-
porate fine metal nanoparticles within the pores of MOFs
in the absence of NPs aggregation on the external surface of
framework. Until now, few cases concerning double solvents
method were investigated in the synthesis of MOFs-based
catalysts for catalytic hydrolysis of ammonia borane [19, 20].

In this work, the highly dispersed Ru NPs were success-
fully encapsulated in the pores of MIL-101 without aggrega-
tion on the external surfaces of the host framework by DSM
(Figure 1). MIL-101, a chromium-based MOF, was chosen as
a host matrix because of its high stability in water, extra-
large surface area, and two kinds of hydrophilic cavities
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Figure 1: Schematic representation of immobilization of the Ru
nanoparticles by the MIL-101 matrix using the DSM.

with free diameters of ca. 2.9 and 3.4 nm accessible through
two pore windows of ca. 1.2 and 1.6 nm in diameter. The
metal precursor, RuCl

3
, can easily diffuse into the internal

cavities. Therefore, a hydrophilic solvent (water) containing
the metal precursor with a volume set equal to or less than
the pore volume of the adsorbent and a hydrophobic solvent
(hexane), which was unable to drive through pore windows,
were used for preparing Ru NPs encapsulated by MIL-
101. The catalytic activity for hydrolytic dehydrogenation of
AB of Ru@MIL-101 was investigated. Compared with other
reported Ru-based catalysts by liquid impregnation method
[21] and heterogeneous Ru(III) catalysts [22], the Ru@MIL-
101 exhibits remarkably enhanced catalytic activity.

2. Experimental

2.1. Chemicals andMaterials. All chemicals were commercial
and used without further purification. Sodium borohydride
(NaBH

4
,>96%, SinopharmChemical ReagentCo., Ltd.), ruo-

dium chloride hydrate (RuCl
3
⋅3H
2
O, 38.0–42.0%, Aladdin

Industrial Inc.), terephthalic acid (HOOCC
6
H
4
COOH,

99%, Aladdin Industrial Inc.), chromic nitrate nonahydrate
(Cr(NO

3
)
3
⋅9H
2
O, 99%, Aladdin Industrial Inc.), hydrochlo-

ric acid (HCl, 37%, Sinopharm Chemical Reagent Co., Ltd.),
hydrofluoric acid solution (HF, 40%, Sinopharm Chemical
Reagent Co., Ltd.), anhydrous n-hexane (Dikma Technolo-
gies Inc.), sodium hydroxide (NaOH > 96%, Sinopharm
Chemical Reagent Co., Ltd.), and ethanol (C

2
H
5
OH, 99%,

Sinopharm Chemical Reagent Co., Ltd.,) were used as
received.

2.2. Synthesis of MIL-101. MIL-101 were synthesized accord-
ing to the reported procedure [23]. Terephthalic acid (0.823 g,
5.0mmol), Cr(NO

3
)
3
⋅9H
2
O (2.007mg, 5.0mmol), HF solu-

tion (1mL, 5.0mmol), and deionized water (24mL) were
reacted in a 100mL Teflon-liner autoclave at 220∘C for 8 h.
After cooling, the resulting green solution of MIL-101 can be
isolated from the residual needle-shaped terephthalic acid by
using a large pore fritted glass filter (100𝜇m).The free tereph-
thalic acidwas eliminated using a small pore fritted glass filter
(30 𝜇m). The powder was further purified by solvothermal
treatment in ethanol at 80∘C for 24 h. To eliminate the
terephthalic acid inside the pores of MIL-101, the resulting
green solid was soaked in NH

4
F (1M) solution at 70∘C for

24 h and immediately filtered, washed with hot water several
times, and finally dried overnight at 150∘C under vacuum.

2.3. Synthesis of Ru@MIL-101. Supported Ru nanoparticles
were prepared via a double solvents method. Typically,
100mg of activated MIL-101 was suspended in 20mL of
dry n-hexane as hydrophobic solvent and the mixture was
sonicated for 15min until it became homogeneous. After
stirring for 2 h, 0.2mLof aqueousHCl solution (1mol/L)with
different RuCl

3
concentrations as the hydrophilic solvent

was added dropwise under continuous vigorous stirring
during 15 minutes. The resulting solution was continuously
stirred for 2 h. After filtration, the green powder was dried
under vacuum at 50∘C. Ru@MIL-101 catalysts were obtained
by reduction with 3.5mL freshly prepared aqueous NaBH

4

solution (0.6M) and subsequent centrifugation.

2.4. Catalytic Activity Investigations. In a typical experiment,
Ru@MIL-101 powders (50mg) were dispersed in 4mL of
water kept in a 30mL of two-necked round-bottom flask
under vigorous stirring. One neck was connected to a gas
burette filled with water to monitor the volume of the gas
evolution while the other neck was used for the introduction
of 3mL of aqueous AB (46.2mg, 1mmol). A shaking table
was used to control the hydrolysis reaction of sodium boro-
hydride under vigorous shaking (220 rpm) at 25∘C.

2.5. Characterization. X-ray diffraction (XRD) measure-
ments were performed on Rigaku D-max-𝛾A XRD with Cu
K𝛼 radiation, 𝜆 = 1.54178 Å. High resolution transmission
electron microscopy (HRTEM, JEM-2010) was applied for
determining the detailed microstructure and composition
information.The surface areameasurements were performed
with N

2
adsorption/desorption isotherms at liquid nitrogen

temperature (77 K) after dehydration under vacuum at 150∘C
for 12 h using automatic volumetric adsorption equipment
(Micromeritics ASAP2010). The pore volume was calculated
by a single point method at 𝑃/𝑃

0
= 0.99. The composition

of the catalysts was analyzed by ICP-AES (Thermo Fisher
Scientific, USA).

3. Results and Discussion

3.1. Characterizations of the Ru@MIL-101 Catalysts. Figure 2
displays the PXRD patterns of MIL-101 and Ru@MIL-101,
respectively. The MIL-101 framework is maintained well
during the catalyst preparation. Furthermore, no signif-
icant diffraction peaks of Ru were detected from wide-
angle powder X-ray diffractions, which might be due to the
immobilization of Ru NPs into the pores of MIL-101.

The N
2
adsorption-desorption isotherms of MIL-101,

2.5 wt% Ru@MIL-101, and 3.7 wt% Ru@MIL-101 are shown
in Figure 3. The specific areas of MIL-101, 2.5 wt% Ru@MIL-
101, and 3.7 wt% Ru@MIL-101 are 2976m2/g, 1823m2/g, and
1691m2/g, respectively. The pore volume of MIL-101, 2.5 wt%
Ru@MIL-101, and 3.7 wt% Ru@MIL-101 is 1.832 cm3g−1,
1.373 cm3g−1, and 1.128 cm3g−1 (Figure 4), respectively. The
decrease in the amount of specific areas and the pore volume
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Figure 2: Powder X-ray diffraction patterns of samples (a)
Ru@MIL-101 and (b) MIL-101.
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Figure 3: Nitrogen sorption isotherms of (a) MIL-101; (b) 2.5 wt%
Ru@MIL-101; (c) 3.7 wt% Ru@MIL-101 at 77 K. Filled and open
symbols represent adsorption anddesorption branches, respectively.

indicates that the pores of MIL-101 were occupied by the well
dispersed Ru NPs.

Figure 5 shows the HRTEM images of 2.5 wt% Ru@MIL-
101 catalyst. HRTEM images (Figures 5(a) and 5(b)) indicate
that the Ru NPs are well dispersed and encapsulated in
the cages of the MIL-101. The mean diameter of Ru NPs
in Ru@MIL-101 is 2 ± 0.2 nm (Figure 5(c)), which is small
enough for them to be accommodated in the twomesoporous
cavities of MIL-101 (2.9 and 3.4 nm). In addition, HRTEM
analysis shows that the Ru NPs are crystalline with a spacing
distance of 2.16 Å (Figure 5(d)) corresponding to Ru (002)
plane. These results indicate that the ultra small Ru NPs have
been effectively immobilized and well dispersed in the pores
of MIL-101.
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Figure 4: The pore diameter distribution of MIL-101, 2.5 wt% and
3.7 wt% Ru@MIL-101.

3.2. Catalytic Activity. Figure 6 shows the H
2

genera-
tion from aqueous AB under ambient conditions in the
presence of Ru@MIL-101. It is found that the 2.5 wt%
and 3.7 wt% Ru@MIL-101 exhibit similar high activity.
2.5 wt% Ru@MIL-101 catalyst has a high TOF value of
187 (molH

2
mol−1 Rumin−1). 3.7 wt% Ru@MIL-101 shows

no significant increase in TOF value, indicating that the
excess Ru NPs might block the pores and channels of
MIL-101. These results are in good agreement with the
N
2
adsorption-desorption isotherms. This value of TOF is

higher than that of Cao et al. [21] using 2.5 wt% Ru/MIL-101
(178molH

2
mol−1 Rumin−1) by solution infiltration method

and similar to that ofMetin et al. [24] using PSSA-co-MA sta-
bilized Ru nanoclusters (187.6molH

2
mol−1 Rumin−1). The

same amount of Ru NPs as the control experiment was
reduced by NaBH

4
without MIL-101. The release of H

2
was

slower for Ru NPs without MIL-101. Moreover, MIL-101
without Ru loading showed no reactivity toward hydrolysis of
AB.These results confirm that the Ru@MIL-101 catalysts have
cooperative effect on hydrolysis of AB and excess loading
amount of Ru NPs cannot improve the efficiency of the
hydrolysis of AB.

The durability of the catalyst is crucial in the practical
application. The durability of the 2.5 wt% Ru@MIL-101 cata-
lyst for hydrolysis of AB was tested by adding another equiv-
alent of aqueous AB. As shown in Figure 7, even after the 5th
run, the catalyst still maintained the original catalytic activity,
indicating the Ru NPs have been effectively immobilized in
the framework of MIL-101, which can stabilize Ru NPs for
good durability.

4. Conclusion

In summary, we have successfully prepared a Ru@MIL-
101 catalyst by immobilizing ultrafine Ru NPs into the
frameworks of MIL-101 using a double solvents method.
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Figure 5: HRTEM images of 2.5 wt% Ru@MIL-101 catalysts with different magnifications.

n(
H

2
)/
n(

A
B)

Time (min)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0 1 2 3 4 5 6 7 8 9

2.5% Ru@MIL-101
3.7% Ru@MIL-101

Ru

MIL-101

Figure 6: Time plots of catalytic dehydrogenation of AB by Ru,
MIL-101, 2.5% Ru@MIL-101, and 3.7% Ru@MIL-101.

The synthesized catalyst exhibited highly catalytic activity
and excellent durability for catalytic hydrolysis of AB at
ambient conditions. The double solvents approach for the
incorporation of RuMNPs within pores can avoid deposition
of the Ru MNPs on the external surface of MIL-101. The
combination of high activity and selectivity as well as good
durability makes Ru@MIL-101 a potential catalyst for hydrol-
ysis of AB for hydrogen generation. Furthermore, this double
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Figure 7: Durability test of 2.5 wt% Ru@MIL-101 for decomposition
of AB.

solvents method can be extended to other MOFs supported
metal nanoparticles for more applications.
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