1,057 research outputs found

    Genetic variability of kernel provitamin-A in sub-tropically adapted maize hybrids possessing rare allele of ÎČ-carotene hydroxylase

    Get PDF
    Vitamin-A deficiency is a major health concern. Traditional yellow maize possesses low provitamin-A (proA). Mutant crtRB1 gene significantly enhances proA. 24 experimental hybrids possessing crtRB1 allele were evaluated for ÎČ-carotene (BC), ÎČ-cryptoxanthin (BCX), lutein (LUT), zeaxanthin (ZEA), total carotenoids (TC) and grain yield at multi-locations. BC (0.64–17.24 ”g/g), BCX (0.45–6.84 ”g/g), proA (0.86–20.46 ”g/g), LUT (9.60–31.03 ”g/g), ZEA (1.24–12.73 ”g/g) and TC (20.60–64.02 ”g/g) showed wide variation. No significant genotype × location interaction was observed for carotenoids. The mean BC (8.61 ”g/g), BCX (4.04 ”g/g) and proA (10.63 ”g/g) in crtRB1-based hybrids was significantly higher than normal hybrids lacking crtRB1-favourable allele (BC: 1.73 ”g/g, BCX: 1.29 ”g/g and proA: 2.37 ”g/g). Selected crtRB1-based hybrids possessed 33% BC and 40% BCX compared to 6% BC and 5% BCX in normal hybrids. BC showed positive correlation with BCX (r = 0.90), proA (r = 0.99) and TC (r = 0.64) among crtRB1-based hybrids. Carotenoids didn't show association with grain yield. Average yield potential of proA rich hybrids (6794 kg/ha) was at par with normal hybrids (6961 kg/ha). PROAH-13, PROAH-21, PROAH-17, PROAH-11, PROAH-23, PROAH-24 and PROAH-3 were the most promising with >12 ”g/g proA and >6000 kg/ha grain yield. The newly identified crtRB1-based hybrids assume significance in alleviating malnutrition

    Coconut-growing soils of Kerala: 2. Assessment of fertility and soil related constraints to coconut production

    Get PDF
    Growth, productivity and health of coconut plantations in humid tropics are influenced by soil qualities. Fertility of coconut-growing soils of Kerala was assessed by analysing samples drawn from the distinct agro-ecological regions of the state: Central and Eastern Palakkad, Northern Kerala, Central Kerala and Southern Kerala, Onattukara sandy plain and coastal sandy plain. The strongly acid soils of Northern and Central Kerala and Onattukara sandy plain are unfavorable for plant nutrient availability and microbial processes. Surface and sub-soils of Central Kerala and sandy plains have low levels of organic carbon. Available phosphorus was high in soils of Southern Kerala and Onattukara sandy plain. Plant available potassium was not adequate in these coconut-growing soils. The nutrient levels in soils of Central Kerala and sandy plain were extremely low. The same pattern was true for secondary nutrients calcium and magnesium. Soils of all regions have adequate levels of available sulphur, iron and manganese. Copper and zinc deficiency was recorded for laterite soils of central region and sandy soils of Onattukara and coastal plain. Plant available boron was deficient in all regions except for the soils of Southern Kerala. Molybdenum levels were marginal in coconut growing soils, except for the soils of Palakkad. Overhead climate and soil moisture availability does not constrain the palm in the state except for Eastern Palakkad where irrigation during dry period is an absolute necessity. The extensive areas of midland laterites and Onattukara sandy plain with strong acid reaction and aluminium in soil solution severely constrain coconut. The acid soils also suffer from deficiencies of potassium, calcium, magnesium, copper, zinc and boron. These soil related constraints affect coconut production significantly and alleviation of the same through liming and adequate application of deficient nutrients can ensure satisfactory yields from the palm

    Relative Biological Effectiveness Studies Using 3 MeV Proton Beam from Folded Tandem Ion Accelerator: An Experimental and Theoretical Approach

    Get PDF
    Proton being the easiest light ion to accelerate and achieve desired beam profile, has been pursued as a popular particulate radiation for therapy applications. In the present study, Saccharomyces cerevisiae D7 strain was used to estimate the RBE values of the 3 MeV proton beam, and an attempt was made to derive mathematical formula for calculating RBE value with respect to the dose. Dosimetry studies were carried out using Fricke dosimetry and Semiconductor Surface Barrier detector to calibrate the absorbed doses of Gamma chamber-1200 and Folded Tandem Ion Accelerator respectively. Gold standard cell survival assay and gene conversion assay were used to compare gamma and proton radiation induced cell death and genetic endpoint. Multi target single hit model was used to derive mathematical formula for RBE estimation. The results show a linear survival-dose response after proton radiation and sigmoid survival-dose response after gamma radiation treatment. The calculated RBE value from the survival and gene conversion studies was 1.60 and 3.93, respectively. The derived mathematical formula is very useful in calculating RBE value, which varies from 3.61 to 1.80 with increasing dose. The estimated RBE value from the mathematical formula is comparable with the experimental values. With the help of the present mathematical formulation, RBE value at any dose can be calculated in the exponential and sigmoidal regions of the survival curve without actually extending the experiment in that dose region, which is not possible using conventional methods

    Mir-21-Sox2 Axis Delineates Glioblastoma Subtypes with Prognostic Impact.

    Get PDF
    UNLABELLED: Glioblastoma (GBM) is the most aggressive human brain tumor. Although several molecular subtypes of GBM are recognized, a robust molecular prognostic marker has yet to be identified. Here, we report that the stemness regulator Sox2 is a new, clinically important target of microRNA-21 (miR-21) in GBM, with implications for prognosis. Using the MiR-21-Sox2 regulatory axis, approximately half of all GBM tumors present in the Cancer Genome Atlas (TCGA) and in-house patient databases can be mathematically classified into high miR-21/low Sox2 (Class A) or low miR-21/high Sox2 (Class B) subtypes. This classification reflects phenotypically and molecularly distinct characteristics and is not captured by existing classifications. Supporting the distinct nature of the subtypes, gene set enrichment analysis of the TCGA dataset predicted that Class A and Class B tumors were significantly involved in immune/inflammatory response and in chromosome organization and nervous system development, respectively. Patients with Class B tumors had longer overall survival than those with Class A tumors. Analysis of both databases indicated that the Class A/Class B classification is a better predictor of patient survival than currently used parameters. Further, manipulation of MiR-21-Sox2 levels in orthotopic mouse models supported the longer survival of the Class B subtype. The MiR-21-Sox2 association was also found in mouse neural stem cells and in the mouse brain at different developmental stages, suggesting a role in normal development. Therefore, this mechanism-based classification suggests the presence of two distinct populations of GBM patients with distinguishable phenotypic characteristics and clinical outcomes. SIGNIFICANCE STATEMENT: Molecular profiling-based classification of glioblastoma (GBM) into four subtypes has substantially increased our understanding of the biology of the disease and has pointed to the heterogeneous nature of GBM. However, this classification is not mechanism based and its prognostic value is limited. Here, we identify a new mechanism in GBM (the miR-21-Sox2 axis) that can classify ∌50% of patients into two subtypes with distinct molecular, radiological, and pathological characteristics. Importantly, this classification can predict patient survival better than the currently used parameters. Further, analysis of the miR-21-Sox2 relationship in mouse neural stem cells and in the mouse brain at different developmental stages indicates that miR-21 and Sox2 are predominantly expressed in mutually exclusive patterns, suggesting a role in normal neural development

    Theory of spin-polarized bipolar transport in magnetic p-n junctions

    Full text link
    The interplay between spin and charge transport in electrically and magnetically inhomogeneous semiconductor systems is investigated theoretically. In particular, the theory of spin-polarized bipolar transport in magnetic p-n junctions is formulated, generalizing the classic Shockley model. The theory assumes that in the depletion layer the nonequilibrium chemical potentials of spin up and spin down carriers are constant and carrier recombination and spin relaxation are inhibited. Under the general conditions of an applied bias and externally injected (source) spin, the model formulates analytically carrier and spin transport in magnetic p-n junctions at low bias. The evaluation of the carrier and spin densities at the depletion layer establishes the necessary boundary conditions for solving the diffusive transport equations in the bulk regions separately, thus greatly simplifying the problem. The carrier and spin density and current profiles in the bulk regions are calculated and the I-V characteristics of the junction are obtained. It is demonstrated that spin injection through the depletion layer of a magnetic p-n junction is not possible unless nonequilibrium spin accumulates in the bulk regions--either by external spin injection or by the application of a large bias. Implications of the theory for majority spin injection across the depletion layer, minority spin pumping and spin amplification, giant magnetoresistance, spin-voltaic effect, biasing electrode spin injection, and magnetic drift in the bulk regions are discussed in details, and illustrated using the example of a GaAs based magnetic p-n junction.Comment: 36 pages, 11 figures, 2 table

    A High Statistics Search for Ultra-High Energy Gamma-Ray Emission from Cygnus X-3 and Hercules X-1

    Full text link
    We have carried out a high statistics (2 Billion events) search for ultra-high energy gamma-ray emission from the X-ray binary sources Cygnus X-3 and Hercules X-1. Using data taken with the CASA-MIA detector over a five year period (1990-1995), we find no evidence for steady emission from either source at energies above 115 TeV. The derived upper limits on such emission are more than two orders of magnitude lower than earlier claimed detections. We also find no evidence for neutral particle or gamma-ray emission from either source on time scales of one day and 0.5 hr. For Cygnus X-3, there is no evidence for emission correlated with the 4.8 hr X-ray periodicity or with the occurrence of large radio flares. Unless one postulates that these sources were very active earlier and are now dormant, the limits presented here put into question the earlier results, and highlight the difficulties that possible future experiments will have in detecting gamma-ray signals at ultra-high energies.Comment: 26 LaTeX pages, 16 PostScript figures, uses psfig.sty to be published in Physical Review

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters

    Search for Higgs bosons decaying to tautau pairs in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a search for the production of neutral Higgs bosons decaying into tautau pairs in ppbar collisions at a center-of-mass energy of 1.96 TeV. The data, corresponding to an integrated luminosity of 5.4 fb-1, were collected by the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the 95% C.L. on the product of production cross section and branching ratio for a scalar resonance decaying into tautau pairs, and we then interpret these limits as limits on the production of Higgs bosons in the minimal supersymmetric standard model (MSSM) and as constraints in the MSSM parameter space.Comment: 7 pages, 5 figures, submitted to PL

    Measurement of the photon+b+b-jet production differential cross section in ppˉp\bar{p} collisions at \sqrt{s}=1.96~\TeV

    Get PDF
    We present measurements of the differential cross section dsigma/dpT_gamma for the inclusive production of a photon in association with a b-quark jet for photons with rapidities |y_gamma|< 1.0 and 30<pT_gamma <300 GeV, as well as for photons with 1.5<|y_gamma|< 2.5 and 30< pT_gamma <200 GeV, where pT_gamma is the photon transverse momentum. The b-quark jets are required to have pT>15 GeV and rapidity |y_jet| < 1.5. The results are based on data corresponding to an integrated luminosity of 8.7 fb^-1, recorded with the D0 detector at the Fermilab Tevatron ppˉp\bar{p} Collider at sqrt(s)=1.96 TeV. The measured cross sections are compared with next-to-leading order perturbative QCD calculations using different sets of parton distribution functions as well as to predictions based on the kT-factorization QCD approach, and those from the Sherpa and Pythia Monte Carlo event generators.Comment: 10 pages, 9 figures, submitted to Phys. Lett.
    • 

    corecore