54 research outputs found

    Criteria for Optimizing Cortical Hierarchies with Continuous Ranges

    Get PDF
    In a recent paper (Reid et al., 2009) we introduced a method to calculate optimal hierarchies in the visual network that utilizes continuous, rather than discrete, hierarchical levels, and permits a range of acceptable values rather than attempting to fit fixed hierarchical distances. There, to obtain a hierarchy, the sum of deviations from the constraints that define the hierarchy was minimized using linear optimization. In the short time since publication of that paper we noticed that many colleagues misinterpreted the meaning of the term “optimal hierarchy”. In particular, a majority of them were under the impression that there was perhaps only one optimal hierarchy, but a substantial difficulty in finding that one. However, there is not only more than one optimal hierarchy but also more than one option for defining optimality. Continuing the line of this work we look at additional options for optimizing the visual hierarchy: minimizing the number of violated constraints and minimizing the maximal size of a constraint violation using linear optimization and mixed integer programming. The implementation of both optimization criteria is explained in detail. In addition, using constraint sets based on the data from Felleman and Van Essen (1991), optimal hierarchies for the visual network are calculated for both optimization methods

    A macaque connectome for large-scale network simulations in TheVirtualBrain

    Get PDF
    © 2019, The Author(s). Models of large-scale brain networks that are informed by the underlying anatomical connectivity contribute to our understanding of the mapping between the structure of the brain and its dynamical function. Connectome-based modelling is a promising approach to a more comprehensive understanding of brain function across spatial and temporal scales, but it must be constrained by multi-scale empirical data from animal models. Here we describe the construction of a macaque (Macaca mulatta and Macaca fascicularis) connectome for whole-cortex simulations in TheVirtualBrain, an open-source simulation platform. We take advantage of available axonal tract-tracing datasets and enhance the existing connectome data using diffusion-based tractography in macaques. We illustrate the utility of the connectome as an extension of TheVirtualBrain by simulating resting-state BOLD-fMRI data and fitting it to empirical resting-state data

    18 F-MK-6240 tau-PET in genetic frontotemporal dementia

    Get PDF
    Tau is one of several proteins associated with frontotemporal dementia. While knowing which protein is causing a patient\u27s disease is crucial, no biomarker currently exists for identifying tau in vivo in frontotemporal dementia. The objective of this study was to investigate the potential for the promising 18F-MK-6240 PET tracer to bind to tau in vivo in genetic frontotemporal dementia. We enrolled subjects with genetic frontotemporal dementia, who constitute an ideal population for testing because their pathology is already known based on their mutation. Ten participants (three with symptomatic P301L and R406W MAPT mutations expected to show tau binding, three with presymptomatic MAPT mutations and four with non-tau mutations who acted as disease controls) underwent clinical characterization, tau-PET scanning with 18F-MK-6240, amyloid-PET imaging with 18F-NAV-4694 to rule out confounding Alzheimer\u27s pathology, and high-resolution structural MRI. Tau-PET scans of all three symptomatic MAPT carriers demonstrated at least mild 18F-MK-6240 binding in expected regions, with particularly strong binding in a subject with an R406W MAPT mutation (known to be associated with Alzheimer\u27s like neurofibrillary tangles). Two asymptomatic MAPT carriers estimated to be 5 years from disease onset both showed modest 18F-MK-6240 binding, while one ∼30 years from disease onset did not exhibit any binding. Additionally, four individuals with symptomatic frontotemporal dementia caused by a non-tau mutation were scanned (two C9orf72; one GRN; one VCP): 18F-MK-6240 scans were negative for three subjects, while one advanced C9orf72 case showed minimal regionally non-specific binding. All 10 amyloid-PET scans were negative. Furthermore, a general linear model contrasting genetic frontotemporal dementia subjects to a set of 83 age-matched controls showed significant binding only in the MAPT carriers in selected frontal, temporal and subcortical regions. In summary, our findings demonstrate mild but significant binding of MK-6240 in amyloid-negative P301L and R406W MAPT mutation subjects, with higher standardized uptake value ratio in the R406W mutation associated with the presence of NFTs, and little non-specific binding. These results highlight that a positive 18F-MK-6240 tau-PET does not necessarily imply a diagnosis of Alzheimer\u27s disease and point towards a potential use for 18F-MK-6240 as a biomarker in certain tauopathies beyond Alzheimer\u27s, although further patient recruitment and autopsy studies will be necessary to determine clinical applicability

    Attention Performance Measured by Attention Network Test Is Correlated with Global and Regional Efficiency of Structural Brain Networks

    Get PDF
    Functional neuroimaging studies have indicated the involvement of separate brain areas in three distinct attention systems: alerting, orienting and executive control (EC). However, the structural correlates underlying attention remains unexplored. Here, we utilized graph theory to examine the neuroanatomical substrates of the three attention systems measured by attention network test (ANT) in 65 healthy subjects. White matter connectivity, assessed with DTI deterministic tractography was modeled as a structural network comprising 90 nodes defined by the Automated Anatomical Labeling (AAL) template. Linear regression analyses were conducted to explore the relationship between topological parameters and the three attentional effects. We found a significant positive correlation between EC function and global efficiency of the whole brain network. At the regional level, node-specific correlations were discovered between regional efficiency and all three ANT components, including dorsolateral superior frontal gyrus, thalamus and parahippocampal gyrus for EC, thalamus and inferior parietal gyrus for alerting, and paracentral lobule and inferior occipital gyrus for orienting. Our findings highlight the fundamental architecture of interregional structural connectivity involved in attention and could provide new insights into the anatomical basis underlying human behavior

    Situating the default-mode network along a principal gradient of macroscale cortical organization

    Get PDF
    Understanding how the structure of cognition arises from the topographical organization of the cortex is a primary goal in neuroscience. Previous work has described local functional gradients extending from perceptual and motor regions to cortical areas representing more abstract functions, but an overarching framework for the association between structure and function is still lacking. Here, we show that the principal gradient revealed by the decomposition of connectivity data in humans and the macaque monkey is anchored by, at one end, regions serving primary sensory/motor functions and at the other end, transmodal regions that, in humans, are known as the default-mode network (DMN). These DMN regions exhibit the greatest geodesic distance along the cortical surface-and are precisely equidistant-from primary sensory/motor morphological landmarks. The principal gradient also provides an organizing spatial framework for multiple large-scale networks and characterizes a spectrum from unimodal to heteromodal activity in a functional metaanalysis. Together, these observations provide a characterization of the topographical organization of cortex and indicate that the role of the DMN in cognition might arise from its position at one extreme of a hierarchy, allowing it to process transmodal information that is unrelated to immediate sensory input

    Association of Phosphorylated Tau Biomarkers With Amyloid Positron Emission Tomography vs Tau Positron Emission Tomography

    Get PDF
    IMPORTANCE: The recent proliferation of phosphorylated tau (p-tau) biomarkers has raised questions about their preferential association with the hallmark pathologies of Alzheimer disease (AD): amyloid-β plaques and tau neurofibrillary tangles. OBJECTIVE: To determine whether cerebrospinal fluid (CSF) and plasma p-tau biomarkers preferentially reflect cerebral β-amyloidosis or neurofibrillary tangle aggregation measured with positron emission tomography (PET). DESIGN, SETTING, AND PARTICIPANTS: This was a cross-sectional study of 2 observational cohorts: the Translational Biomarkers in Aging and Dementia (TRIAD) study, with data collected between October 2017 and August 2021, and the Alzheimer's Disease Neuroimaging Initiative (ADNI), with data collected between September 2015 and November 2019. TRIAD was a single-center study, and ADNI was a multicenter study. Two independent subsamples were derived from TRIAD. The first TRIAD subsample comprised individuals assessed with CSF p-tau (p-tau181, p-tau217, p-tau231, p-tau235), [18F]AZD4694 amyloid PET, and [18F]MK6240 tau PET. The second TRIAD subsample included individuals assessed with plasma p-tau (p-tau181, p-tau217, p-tau231), [18F]AZD4694 amyloid PET, and [18F]MK6240 tau PET. An independent cohort from ADNI comprised individuals assessed with CSF p-tau181, [18F]florbetapir PET, and [18F]flortaucipir PET. Participants were included based on the availability of p-tau and PET biomarker assessments collected within 9 months of each other. Exclusion criteria were a history of head trauma or magnetic resonance imaging/PET safety contraindications. No participants who met eligibility criteria were excluded. EXPOSURES: Amyloid PET, tau PET, and CSF and plasma assessments of p-tau measured with single molecule array (Simoa) assay or enzyme-linked immunosorbent assay. MAIN OUTCOMES AND MEASURES: Associations between p-tau biomarkers with amyloid PET and tau PET. RESULTS: A total of 609 participants (mean [SD] age, 66.9 [13.6] years; 347 female [57%]; 262 male [43%]) were included in the study. For all 4 phosphorylation sites assessed in CSF, p-tau was significantly more closely associated with amyloid-PET values than tau-PET values (p-tau181 difference, 13%; 95% CI, 3%-22%; P = .006; p-tau217 difference, 11%; 95% CI, 3%-20%; P = .003; p-tau231 difference, 15%; 95% CI, 5%-22%; P < .001; p-tau235 difference, 9%; 95% CI, 1%-19%; P = .02) . These results were replicated with plasma p-tau181 (difference, 11%; 95% CI, 1%-22%; P = .02), p-tau217 (difference, 9%; 95% CI, 1%-19%; P = .02), p-tau231 (difference, 13%; 95% CI, 3%-24%; P = .009), and CSF p-tau181 (difference, 9%; 95% CI, 1%-21%; P = .02) in independent cohorts. CONCLUSIONS AND RELEVANCE: Results of this cross-sectional study of 2 observational cohorts suggest that the p-tau abnormality as an early event in AD pathogenesis was associated with amyloid-β accumulation and highlights the need for careful interpretation of p-tau biomarkers in the context of the amyloid/tau/neurodegeneration, or A/T/(N), framework

    Astrocyte biomarker signatures of amyloid-β and tau pathologies in Alzheimer’s disease

    Get PDF
    Astrocytes can adopt multiple molecular phenotypes in the brain of Alzheimer's disease (AD) patients. Here, we studied the associations of cerebrospinal fluid (CSF) glial fibrillary acidic protein (GFAP) and chitinase-3-like protein 1 (YKL-40) levels with brain amyloid-β (Aβ) and tau pathologies. We assessed 121 individuals across the aging and AD clinical spectrum with positron emission tomography (PET) brain imaging for Aβ ([18F]AZD4694) and tau ([18F]MK-6240), as well as CSF GFAP and YKL-40 measures. We observed that higher CSF GFAP levels were associated with elevated Aβ-PET but not tau-PET load. By contrast, higher CSF YKL-40 levels were associated with elevated tau-PET but not Aβ-PET burden. Structural equation modeling revealed that CSF GFAP and YKL-40 mediate the effects of Aβ and tau, respectively, on hippocampal atrophy, which was further associated with cognitive impairment. Our results suggest the existence of distinct astrocyte biomarker signatures in response to brain Aβ and tau accumulation, which may contribute to our understanding of the complex link between reactive astrogliosis heterogeneity and AD progression

    Mapping neurotransmitter systems to the structural and functional organization of the human neocortex

    Get PDF
    Neurotransmitter receptors support the propagation of signals in the human brain. How receptor systems are situated within macro-scale neuroanatomy and how they shape emergent function remain poorly understood, and there exists no comprehensive atlas of receptors. Here we collate positron emission tomography data from more than 1,200 healthy individuals to construct a whole-brain three-dimensional normative atlas of 19 receptors and transporters across nine different neurotransmitter systems. We found that receptor profiles align with structural connectivity and mediate function, including neurophysiological oscillatory dynamics and resting-state hemodynamic functional connectivity. Using the Neurosynth cognitive atlas, we uncovered a topographic gradient of overlapping receptor distributions that separates extrinsic and intrinsic psychological processes. Finally, we found both expected and novel associations between receptor distributions and cortical abnormality patterns across 13 disorders. We replicated all findings in an independently collected autoradiography dataset. This work demonstrates how chemoarchitecture shapes brain structure and function, providing a new direction for studying multi-scale brain organization.</p

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
    corecore