1,490 research outputs found
International Disaster Medical Sciences Fellowship: Model Curriculum and Key Considerations for Establishment of an Innovative International Educational Program
As recent events highlight, a global requirement exists for evidence-based training in the emerging field of Disaster Medicine. The following is an example of an International Disaster Medical Sciences Fellowship created to fill this need. We provide here a program description, including educational goals and objectives and a model core curriculum based on current evidence-based literature. In addition, we describe the administrative process to establish the fellowship. Information about this innovative educational program is valuable to international Disaster Medicine scholars, as well as U.S. institutions seeking to establish formal training in Disaster Medical Sciences
Sources and budgets for CO and O-3 in the northeastern Pacific during the spring of 2001: Results from the PHOBEA-II Experiment
Abstract. Ground and airborne measurements of CO, ozone, and aerosols were obtained in th
Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo
We treated 10 children with X-linked SCID (SCID-X1) using gammaretrovirus-mediated gene transfer. Those with sufficient follow-up were found to have recovered substantial immunity in the absence of any serious adverse events up to 5 years after treatment. To determine the influence of vector integration on lymphoid reconstitution, we compared retroviral integration sites (RISs) from peripheral blood CD3(+) T lymphocytes of 5 patients taken between 9 and 30 months after transplantation with transduced CD34(+) progenitor cells derived from 1 further patient and I healthy donor. Integration occurred preferentially in gene regions on either side of transcription start sites, was clustered, and correlated with the expression level in CD34(+) progenitors during transduction. In contrast to those in CD34(+) cells, RISs recovered from engrafted CD3(+)T cells were significantly overrepresented within or near genes encoding proteins with kinase or transferase activity or involved in phosphorus metabolism. Although gross patterns of gene expression were unchanged in transduced cells, the divergence of RIS target frequency between transduced progenitor cells and post-thymic T lymphocytes indicates that vector integration influences cell survival, engraftment, or proliferation
The current state of hospital-based emergency medicine in Germany
Germany has a long tradition of having physicians, often anesthesiologists with additional training in emergency medicine, deliver prehospital emergency care. Hospital-based emergency medicine in Germany also differs significantly from the Anglo-American model, and until recently having separate emergency rooms for different departments was the norm. In the past decade, many hospitals have created âcentralized emergency departmentsâ [Zentrale Notaufnahme (ZNAs)]. There is ongoing debate about the training and certification of physicians working in the ZNAs and whether Germany will adopt a specialty board certification for emergency medicine
Seasonal variation of carbon monoxide in northern Japan: Fourier transform IR measurements and source-labeled model calculations
Tropospheric carbon monoxide (CO) was measured throughout 2001 using groundbased Fourier transform IR (FTIR) spectrometers at Moshiri 44.4N and Rikubetsu 43.5N) observatories in northern Japan, which are separated by 150 km. Seasonal and day-to-day variations of CO are studied using these data, and contributions from various CO sources are evaluated using three-dimensional global chemistry transport model (GEOS-CHEM) calculations. Seasonal maximum and minimum FTIR-derived tropospheric CO amounts occurred in April and September, respectively. The ratio of partial column amounts between the 0â4 and 0â12 km altitude ranges is found to be slightly greater in early spring. The GEOS-CHEM model calculations generally reproduce these observed features. Source-labeled CO model calculations suggest that the observed seasonal variation is caused by seasonal contributions from various sources, in addition to a seasonal change in chemical CO loss by OH. Changes in meteorological fields largely control the relative importance of various source contributions. The contributions from fossil fuel (FF) combustion in Asia and photochemical CO production have the greatest yearly averaged contribution at 1 km among the CO sources (31% each). The Asian FF contribution increases from winter to summer, because weak southwesterly wind in summer brings more Asian pollutants to the observation sites. The seasonal variation from photochemical CO production is small (±17% at 1 km), likely because of concurrent increases (decreases) of photochemical production and loss rates in summer (winter), with the largest contribution between August and December. The contribution from intercontinental transport of European FF combustion CO is found to be comparable to that of Asian FF sources in winter. Northwesterly wind around the Siberian high in this season brings pollutants from Europe directly to Japan, in addition to southward transport of accumulated pollution from higher latitudes. The influences are generally greater at lower altitudes, resulting in a vertical gradient in the CO profile during winter. The model underestimates total CO by 12â14% between March and June. Satellite-derived fire-count data and the relationship between FTIR-derived HCN and CO amounts are generally consistent with biomass burning influences, which could have been underestimated by the model calculations
Severe hereditary spherocytosis and distal renal tubular acidosis associated with the total absence of band 3
Absence of band 3, associated with the mutation Coimbra (V488M) in the homozygous state, caused severe hereditary spherocytosis in a young child. Although prenatal testing was made available to the parents, it was declined. Because the fetus stopped moving near term, an emergency cesarean section was performed and a severely anemic, hydropic female baby was delivered. She was resuscitated and initially kept alive with respiratory assistance and hypertransfusion therapy. Cord blood smears revealed erythroblastosis, poikilocytosis, and red cells with stalk-like elongations. Band 3 and protein 4.2 were absent; spectrin, ankyrin, and glycophorin A were significantly reduced. Renal tubular acidosis was detected by the age of 3 months. Nephrocalcinosis appeared soon thereafter. After 3 years of follow-up the child is doing reasonably well on a regimen that includes regular blood transfusions and daily bicarbonate supplements. The long-term prognosis remains uncertain given the potential for hematologic and renal complications
Beta-decay branching ratios of 62Ga
Beta-decay branching ratios of 62Ga have been measured at the IGISOL facility
of the Accelerator Laboratory of the University of Jyvaskyla. 62Ga is one of
the heavier Tz = 0, 0+ -> 0+ beta-emitting nuclides used to determine the
vector coupling constant of the weak interaction and the Vud quark-mixing
matrix element. For part of the experimental studies presented here, the
JYFLTRAP facility has been employed to prepare isotopically pure beams of 62Ga.
The branching ratio obtained, BR= 99.893(24)%, for the super-allowed branch is
in agreement with previous measurements and allows to determine the ft value
and the universal Ft value for the super-allowed beta decay of 62Ga
Optimising LeadâAir Battery Performance through Innovative Open-Cell Foam Anodes
\ua9 2024 by the authors.In the dynamic realm of sustainable energy storage technologies, the global research landscape presents myriad scientific and economic challenges. The erratic growth of renewable energies alongside the phasing out of conventional power plants poses a significant hurdle in maintaining a stable balance between energy supply and demand. Consequently, energy storage solutions play a pivotal role in mitigating substantial fluctuations in demand. Metalâair batteries, distinguished by their superior energy density and enhanced safety profile compared to other storage devices, emerge as promising solutions. Leveraging the well-established leadâacid battery technology, this study introduces a novel approach utilising open-cell foam manufactured through the Excess Salt Replication process as an anode for leadâair battery cells. This innovation not only conserves lead but also reduces battery weight. By employing a 25% antimonial lead alloy, open-cell foams with diameters ranging from 2 mm to 5 mm were fabricated for the antimonial leadâair battery. Preliminary findings suggest that the effective electrical conductivity of primary battery cells, measured experimentally, surpasses that of cells composed of the same dense, non-porous antimonial lead alloy. This improvement is primarily attributed to their extensive specific surface area, facilitating oxidationâreduction reactions. A correlation between effective electrical conductivity and cell diameter is established, indicating optimal conductivity achieved with a 5 mm cell diameter. These results underscore the feasibility of implementing such an electrical system
Q-value of the superallowed beta decay of Ga-62
Masses of the radioactive isotopes 62Ga, 62Zn and 62Cu have been measured at
the JYFLTRAP facility with a relative precision of better than 18 ppb. A Q_EC
value of (9181.07 +- 0.54) keV for the superallowed decay of 62Ga is obtained
from the measured cyclotron frequency ratios of 62Ga-62Zn, 62Ga-62Ni and
62Zn-62Ni ions. The resulting Ft-value supports the validity of the conserved
vector current hypothesis (CVC). The mass excess values measured were (-51986.5
+-1.0) keV for 62Ga, (-61167.9 +- 0.9) keV for 62Zn and (-62787.2 +- 0.9) keV
for 62Cu.Comment: 12 pages, 3 figures, 2 tables, submitted to Phys. Lett. B. v2: added
acknowledgement
- âŠ