62 research outputs found

    Patient-derived models: Advanced tools for precision medicine in neuroblastoma

    Get PDF
    Neuroblastoma is a childhood cancer derived from the sympathetic nervous system. High-risk neuroblastoma patients have a poor overall survival and account for ~15% of childhood cancer deaths. There is thus a need for clinically relevant and authentic models of neuroblastoma that closely resemble the human disease to further interrogate underlying mechanisms and to develop novel therapeutic strategies. Here we review recent developments in patient-derived neuroblastoma xenograft models and in vitro cultures. These models can be used to decipher mechanisms of metastasis and treatment resistance, for drug screening, and preclinical drug testing. Patient-derived neuroblastoma models may also provide useful information about clonal evolution, phenotypic plasticity, and cell states in relation to neuroblastoma progression. We summarize current opportunities for, but also barriers to, future model development and application. Integration of patient-derived models with patient data holds promise for the development of precision medicine treatment strategies for children with high-risk neuroblastoma

    Anti-tumor effects of PIM/PI3K/mTOR triple kinase inhibitor IBL-302 in neuroblastoma

    Get PDF
    The PI3K pathway is a major driver of cancer progression. However, clinical resistance to PI3K inhibition is common. IBL-302 is a novel highly specific triple PIM, PI3K, and mTOR inhibitor. Screening IBL-302 in over 700 cell lines representing 47 tumor types identified neuroblastoma as a strong candidate for PIM/PI3K/mTOR inhibition. IBL-302 was more effective than single PI3K inhibition in vitro, and IBL-302 treatment of neuroblastoma patient-derived xenograft (PDX) cells induced apoptosis, differentiated tumor cells, and decreased N-Myc protein levels. IBL-302 further enhanced the effect of the common cytotoxic chemotherapies cisplatin, doxorubicin, and etoposide. Global genome, proteome, and phospho-proteome analyses identified crucial biological processes, including cell motility and apoptosis, targeted by IBL-302 treatment. While IBL-302 treatment alone reduced tumor growth in vivo, combination therapy with low-dose cisplatin inhibited neuroblastoma PDX growth. Complementing conventional chemotherapy treatment with PIM/PI3K/mTOR inhibition has the potential to improve clinical outcomes and reduce severe late effects in children with high-risk neuroblastoma.This work was supported by funding from the Swedish Cancer Society (to SM, DB), the Swedish Research Council (to DB), the Swedish Childhood Cancer Fund (to SM, KvS, DB), Region Skåne and the research funds of Skåne University Hospital (to DB), the Mary Bevé Foundation (to SM, KvS, DB), Magnus Bergvalls stiftelse (to SM, DB), the Thelma Zoéga Foundation (to SM), Hans von Kantzow Foundation (to SM), Crafoord Foundation (to DB), Åke Wiberg Foundation (to DB), Jeanssons Stiftelser (to DB), Ollie och Elof Ericssons stiftelser (to DB), Berth von Kantzows stiftelse (to DB), the Royal Physiographic Society of Lund (to SM, DB), and the Spanish Ministry of Health and Social Policy (ADE 08 / 90038 ) and the Spanish Ministry of Science and Innovation (CIT- 090000 - 2008 - 14 ) (to JP, SMa, CBA). We would like to thank the Local MS Support at Medical Faculty, Lund University. The authors would like to acknowledge support of the National Genomics Infrastructure (NGI)/Uppsala Genome Center and UPPMAX for providing assistance in massive parallel sequencing and computational infrastructure. Work performed at NGI/Uppsala Genome Center has been funded by RFI/VR and Science for Life Laboratory, SwedenS

    Corporate Security Responsibility: Towards a Conceptual Framework for a Comparative Research Agenda

    Get PDF
    The political debate about the role of business in armed conflicts has increasingly raised expectations as to governance contributions by private corporations in the fields of conflict prevention, peace-keeping and postconflict peace-building. This political agenda seems far ahead of the research agenda, in which the negative image of business in conflicts, seen as fuelling, prolonging and taking commercial advantage of violent conflicts,still prevails. So far the scientific community has been reluctant to extend the scope of research on ‘corporate social responsibility’ to the area of security in general and to intra-state armed conflicts in particular. As a consequence, there is no basis from which systematic knowledge can be generated about the conditions and the extent to which private corporations can fulfil the role expected of them in the political discourse. The research on positive contributions of private corporations to security amounts to unconnected in-depth case studies of specific corporations in specific conflict settings. Given this state of research, we develop a framework for a comparative research agenda to address the question: Under which circumstances and to what extent can private corporations be expected to contribute to public security

    Inhibition of fatty acid synthesis induces differentiation and reduces tumor burden in childhood neuroblastoma

    Get PDF
    Many metabolic pathways, including lipid metabolism, are rewired in tumors tosupport energy and biomass production and to allow adaptation to stressful en-vironments. Neuroblastoma is the second deadliest solid tumor in children. Ge-netic aberrations, as the amplification of theMYCN-oncogene, correlate stronglywith disease progression. Yet, there are only a few molecular targets successfullyexploited in the clinic. Here we show that inhibition of fatty acid synthesis led toincreased neural differentiation and reduced tumor burden in neuroblastomaxenograft experiments independently ofMYCN-status. This was accompaniedby reduced levels of the MYCN or c-MYC oncoproteins and activation of ERKsignaling. Importantly, the expression levels of genes involved inde novofattyacid synthesis showed prognostic value for neuroblastoma patients. Our findingsdemonstrate that inhibition ofde novofatty acid synthesis is a promising pharma-cological intervention strategy for the treatment of neuroblastoma indepen-dently ofMYCN-status

    Breast cancer associated CD169+ macrophages possess broad immunosuppressive functions but enhance antibody secretion by activated B cells

    Get PDF
    CD169+ resident macrophages in lymph nodes of breast cancer patients are for unknown reasons associated with a beneficial prognosis. This contrasts CD169+ macrophages present in primary breast tumors (CD169+ TAMs), that correlate with a worse prognosis. We recently showed that these CD169+ TAMs were associated with tertiary lymphoid structures (TLSs) and Tregs in breast cancer. Here, we show that CD169+ TAMs can be monocyte-derived and express a unique mediator profile characterized by type I IFNs, CXCL10, PGE2 and inhibitory co-receptor expression pattern. The CD169+ monocyte-derived macrophages (CD169+ Mo-M) possessed an immunosuppressive function in vitro inhibiting NK, T and B cell proliferation, but enhanced antibody and IL6 secretion in activated B cells. Our findings indicate that CD169+ Mo-M in the primary breast tumor microenvironment are linked to both immunosuppression and TLS functions, with implications for future targeted Mo-M therapy

    Connexin-43 in the osteogenic BM niche regulates its cellular composition and the bidirectional traffic of hematopoietic stem cells and progenitors

    Full text link
    Connexin-43 (Cx43), a gap junction protein involved in control of cell proliferation, differentiation and migration, has been suggested to have a role in hematopoiesis. Cx43 is highly expressed in osteoblasts and osteogenic progenitors (OB/P). To elucidate the biologic function of Cx43 in the hematopoietic microenvironment (HM) and its influence in hematopoietic stem cell (HSC) activity, we studied the hematopoietic function in an in vivo model of constitutive deficiency of Cx43 in OB/P. The deficiency of Cx43 in OB/P cells does not impair the steady state hematopoiesis, but disrupts the directional trafficking of HSC/progenitors (Ps) between the bone marrow (BM) and peripheral blood (PB). OB/P Cx43 is a crucial positive regulator of transstromal migration and homing of both HSCs and progenitors in an irradiated microenvironment. However, OB/P Cx43 deficiency in nonmyeloablated animals does not result in a homing defect but induces increased endosteal lodging and decreased mobilization of HSC/Ps associated with proliferation and expansion of Cxcl12-secreting mesenchymal/osteolineage cells in the BM HM in vivo. Cx43 controls the cellular content of the BM osteogenic microenvironment and is required for homing of HSC/Ps in myeloablated animal

    Toward Brain Tumor Gene Therapy Using Multipotent Mesenchymal Stromal Cell Vectors.

    Get PDF
    Gene therapy of solid cancers has been severely restricted by the limited distribution of vectors within tumors. However, cellular vectors have emerged as an effective migratory system for gene delivery to invasive cancers. Implanted and injected multipotent mesenchymal stromal cells (MSCs) have shown tropism for several types of primary tumors and metastases. This capacity of MSCs forms the basis for their use as a gene vector system in neoplasms. Here, we review the tumor-directed migratory potential of MSCs, mechanisms of the migration, and the choice of therapeutic transgenes, with a focus on malignant gliomas as a model system for invasive and highly vascularized tumors. We examine recent findings demonstrating that MSCs share many characteristics with pericytes and that implanted MSCs localize primarily to perivascular niches within tumors, which might have therapeutic implications. The use of MSC vectors in cancer gene therapy raises concerns, however, including a possible MSC contribution to tumor stroma and vasculature, MSC-mediated antitumor immune suppression, and the potential malignant transformation of cultured MSCs. Nonetheless, we highlight the novel prospects of MSC-based tumor therapy, which appears to be a promising approach
    • …
    corecore