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Patient-derived models:
Advanced tools for precision
medicine in neuroblastoma

Kristina Aaltonen, Katarzyna Radke, Aleksandra Adamska,
Alexandra Seger, Adriana Mañas and Daniel Bexell*

Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University,
Lund, Sweden
Neuroblastoma is a childhood cancer derived from the sympathetic nervous

system. High-risk neuroblastoma patients have a poor overall survival and

account for ~15% of childhood cancer deaths. There is thus a need for clinically

relevant and authentic models of neuroblastoma that closely resemble the

human disease to further interrogate underlying mechanisms and to develop

novel therapeutic strategies. Here we review recent developments in patient-

derived neuroblastoma xenograft models and in vitro cultures. These models

can be used to decipher mechanisms of metastasis and treatment resistance,

for drug screening, and preclinical drug testing. Patient-derived neuroblastoma

models may also provide useful information about clonal evolution, phenotypic

plasticity, and cell states in relation to neuroblastoma progression. We

summarize current opportunities for, but also barriers to, future model

development and application. Integration of patient-derived models with

patient data holds promise for the development of precision medicine

treatment strategies for children with high-risk neuroblastoma.

KEYWORDS
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1 Introduction

Despite significant academic, industrial, and clinical efforts, successfully translating

preclinical findings to clinical trials and practice remains challenging (1–4) and less than

10% of drugs entering oncology clinical trials are eventually approved for clinical use

(1, 5). Furthermore, these efforts and failures come at high financial and ethical costs.

Pediatric malignancies have special considerations, since clinical drug testing is even

more restricted by the relatively small number of patients and the ethics related to long-

term side-effects in children. Involvement of multiple stakeholders is important to

address the lack of childhood-specific drug development in the pharmaceutical sector

(6, 7). Thus, there is an urgent need for clinically relevant and biologically accurate
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preclinical models to minimize these current bottlenecks to drug

development and implementation (8).

Neuroblastoma (NB) is the most common solid extracranial

pediatric tumor, accounting for ~15% of pediatric oncology

deaths (9, 10). NB can be regarded as an aberration of neural

crest development, and although it can arise anywhere along the

sympathetic nervous system, most primary tumors are found in

the adrenal gland (11). NB is biologically and clinically

heterogenous, and patients are stratified into different risk

groups based on tumor characteristics and disease presentation

(12, 13). Clinical responses vary from spontaneous regression to

metastatic and drug-resistant disease despite intensive treatment

(13). Furthermore, patients often suffer from severe therapy-

related long-term adverse effects (14).

NB is a copy number-driven disease with few targetable

somatic mutations found at diagnosis, especially when

compared with adult malignancies (15). The MYCN oncogene

is amplified in ~20% of cases and is strongly correlated with

aggressive phenotypes and unfavorable clinical outcomes (16).

Other common chromosomal copy number changes, including

11q loss and 17q gain, are also poor prognostic features (17).

Recurrent mutations are rare in NB but include ALK (9%),

ATRX (7%), and PTEN (3%) mutations (15). In relapsed tumors,

genome-wide sequencing has revealed a higher prevalence of

recurrent mutations in targetable pathways, such as RAS-MAPK

(18, 19), but at relatively low frequencies. Recent transcriptional

and epigenetic analyses suggest that NB cells can adopt at least
Frontiers in Oncology 02
two phenotypic cell states, known as adrenergic (ADR)/

differentiated and mesenchymal (MES)/immature (20–24).

These findings highlight the heterogeneous and dynamic

nature of NB.

Reliable, predictive, and authentic NB models are important

because: (i) NB is uncommon, so sufficiently powered clinical

trials are challenging and patient material is scarce for molecular

studies (25), placing extra weight on the translatability of

preclinical results; (ii) preclinical models that accurately

recapitulate known clinical, genetic, and transcriptional intra-

and inter-tumor heterogeneity are important for the

identification of effective therapeutic targets; and (iii) patient-

derived (PD) models resemble the clinical scenario better than

conventional models and can therefore be used to screen for and

test the most promising and safe novel therapies.

Here we discuss recent progress in patient-derived

xenografts (PDXs) and PD in vitro cultures as preclinical NB

models. We summarize the development of different PD models,

their utility in studying biological mechanisms and treatment

responses, and how they can be utilized for preclinical drug

testing to improve treatment strategies against NB (Figure 1).
2 PD NB models

Conventional cell lines have been used as laboratory models

for decades, and they have provided valuable knowledge about
FIGURE 1

Establishment and application of PD models in NB contributing to novel treatment strategies.
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tumor biology and drug efficacy in many cancer types. However,

cancer cell lines are usually passaged under serum-containing

conditions for years and thus their molecular profiles often differ

from the original patient tumor (26, 27). This matters in terms of

model fidelity, especially when considering clinical applicability;

for example, clinically important features such as drug resistance

might be lost after long-term in vitro passaging (27). PD NB

models are established directly from tumor material obtained

from children after parental informed consent. PD models have

been shown to better reflect the features (e.g., treatment

response) of their original tumors, compared with

conventional models (28–31). PDXs have now been established

from many diverse tumor types of adult and pediatric cancers

including NB (32–35). Over the last few decades, the cancer

research community has gradually turned towards PD model

systems (8), and the US National Cancer Institute recently

decided to replace its panel of human cancer cell lines (NCI-

60) with well-characterized PDX models (36) for drug screening.
2.1 Establishment of NB PDXs in vivo

NB PDXs have been established in immunocompromised

mice, mainly by implanting tumor samples or cells obtained from

patients next to the adrenal gland (orthotopic implantation) or

subcutaneously (ectopic/heterologous implantation). Established

orthotopic PDX tumors can be monitored by clinical imaging

techniques such as FDG-PET or MRI (37), and they have been

shown to retain important patient tumor characteristics such as

invasive growth patterns into surrounding tissues and

spontaneous metastatic capacity to the bone marrow, lungs, and

liver (37–39). PDX models retain NB-specific molecular features,

including cellular differentiation status, protein marker expression

(synaptophysin, chromogranin A, NCAM/CD56), chromosomal

copy number changes (including 1p loss, MYCN amplification,

17q gain), mutational profiles, and DNA methylation status (32,

34, 37–41). Transcriptional analysis of orthotopic NB PDXs has

shown that they also retain a certain degree of patient-specific

gene expression, indicating transcriptional stability, from the

corresponding NBs (32, 39, 40). Thus, although a PDX is

established from only a fragment of the original patient tumor,

data from multiple laboratories have shown that NB PDXs

represent the main and clinically relevant features of NB patient

tumors. There are now several sources of NB PDX tumors

(detailed in (42)), including the US Pediatric Preclinical In Vivo

Testing Consortium (PIVOT) and the European ITCC-P4 -

Pediatric Preclinical Proof of Concept Platform.

The site of implantation affects the PDX model: orthotopic

implantation has a higher engraftment rate and tumors grow

faster than those implanted subcutaneously (32, 41). The human

tumor microenvironment (TME) is gradually lost in vivo.

Instead, orthotopic NB PDXs have been shown to contain a

murine TME including for example vascularization, pericytes,
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macrophages, and extracellular matrix resembling the

architecture in the parental NB (38). Potential functional

differences between human and mouse TMEs are not fully

elucidated and this uncertainty is important to consider (43).

It has been debated whether the use of mice as hosts leads to

murine-specific tumor evolution during PDX engraftment and

propagation (44, 45). However, serial in vivo passaging of

orthotopic NB PDXs for up to two years has shown that PDXs

retain key genetic aberrations (e.g., 1p loss,MYCN amplification,

and 17q gain) and acquire only minor genetic changes over time,

as would be expected from their natural evolution (39). Clonal

dynamics studies during tumor progression in PDXs have

shown the presence of branched evolution, clonal sweeps, and

convergent evolution of specific small deletions in potentially

tumor-associated genes (46), a pattern similar to tumor

evolution in NB patients (47).

There have been cases where human lymphomas have

developed at the site of NB-cell injection (41, 48), or when

murine-derived tumors have replaced the human PDX (49, 50),

so thorough and frequent characterization of PDXs is necessary.

Setting up robust biobanks for storage of well-characterized,

early passage PDX-tumors will be of great benefit to the research

community (8).

While most PDX models have been established in mice,

zebrafish are increasingly used as hosts for implantation of PD

tumor cells, including NB. Zebrafish allow for rapid and low-cost

preclinical drug screening in an intact organism that may inform

about precision medicine strategies in NB (51, 52). Furthermore,

genetically-modified strains are available and tumors can be

visualized from an early stage and followed dynamically.

However, challenges in translating drug testing findings to

patients include limited toxicity and pharmacodynamic data

(51), temperature differences, and the non-mammalian TME.

PD cells and tumor biopsies have also been implanted into

chick embryos with a high engraftment rate, forming metastases

only from tumor cells from patients with metastatic NB and not

from localized disease (53). NB cells migrated along the

embryonic aorta and along peripheral nerves, demonstrating

these as major routes for metastatic dissemination. This model

allows for investigation of tumor progression and metastasis in

an embryonic environment in vivo (53). However, the clinical

relevance of the models remains uncertain.
2.2 PD cultures in vitro

PD tumor cultures are established in vitro directly from

patients and can be grown as tumor organoids (PDOs),

spheroids, or as semi-attached or attached cultures. PD

cultures provide an opportunity to test potential therapeutics

in a faster, high-throughput manner compared to PDXs.

PD NB cultures are isolated directly from primary or

metastatic tumors from patients and are cultured in serum-
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free medium with defined growth factors to avoid neurospecific

differentiation. This is best achieved on low-attachment

plastics, with or without Matrigel or other scaffolding

materials. Several groups have shown that PD NB cultures

retain the copy-number profiles, mutation patterns, and other

genetic and phenotypic characteristics of the tumor of origin

(54–57) in both Matrigel and as free-floating spheres, but

PDOs in Matrigel have better self-organization (56).

Establishing PD cultures from different stages and subgroups

of NB has been challenging. In general, more aggressive,

MYCN-amplified, and metastatic tumors are easier to

propagate in vitro. Recent advances in 3D scaffolding with

hydrogels and porous scaffolding (reviewed in (58)) together

with further optimization of culture conditions might increase

the probability of successful establishment. Characterization of

culture conditions is also important to understand how

different transcriptional cell states might be maintained in

vitro. Notably, it is important to verify NB identity and lack

of contamination with other cells, which can otherwise

overtake PD NB cultures (59, 60).

Since the limited number of NB patients restricts the number

of models, a complementary approach is to use PDX-derived in

vitro cultures after expansion of patient material in vivo (37, 40,

57, 61–63). Similar to PD cultures, PDX-derived NB cells can be

grown adherent or as free-floating 3D cultures, and they retain

patient-specific genomic aberrations as well as tumorigenic and

metastatic capacity in vivo (62). Drug responses between NB

PD- and PDX-derived cultures are highly correlated, suggesting

that these models can be used interchangeably for drug testing

(41). Biobanking of PD- and PDX-derived NB cultures will be a

very important tool for future drug screening and larger

preclinical drug testing (8).
3 Applications of PD NB models

Conventional cell lines, cell-line derived xenografts, and

genetically engineered mouse models have been the main

preclinical tools used to study resistance mechanisms and for

drug testing. By using PD models that retain the main

characteristics and heterogeneity of the original tumors,

patient tumors and their treatment response can be better

represented in the laboratory, thereby bridging the gap

between preclinical models and the clinic.
3.1 Identification of treatment resistance
mechanisms and biomarkers

Treatment resistance, relapse after therapy, and metastasis

are urgent clinical problems in NB. A few studies have used PD

models to identify diverse mechanisms implicated in NB

invasion, migration, metastasis (64, 65), and resistance to
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specific chemotherapies (66). Using a clinically relevant

treatment protocol (COJEC-induction therapy), NB PDXs

show similar chemotherapy responses to their corresponding

patients, suggesting that NB PDXs are useful for modelling

chemoresistance and relapse (46). The models showed that

chemoresistant NBs have a lower ADR signature and

enrichment for an immature MES-like phenotype, suggesting

an association between the MES cell state and relapse (46). These

results are consistent with recent findings in the clinical setting

(24, 67). The ability to accurately model treatment responses and

their association with phenotypic cell states make in vivo PDXs a

very promising tool to explore NB phenotypes in a reproducible

manner, as well as characterizing the role of phenotypic

plasticity in acquired and intrinsic resistance.

Reliable biomarkers for monitoring tumor responses are

important for longer-term studies of relapse and resistance,

and in clinical diagnostics. NB PDXs reproduce the patient’s

relative levels of circulating metanephrines (68). Given that

metanephrines are tumor progression biomarkers [plasma

levels correlate with tumor volume (69)], this could pave the

way for a minimally invasive method of monitoring tumor

response/resistance in orthotopic PDX models. Another

approach for monitoring responses is with gene signatures as

recently optimized and used in a therapeutic study for high-risk

relapsed NB in PD models (70).
3.2 Drug testing

3.2.1 Application in the preclinical setting
Preclinical PDmodel testing is now highly recommended for

proof-of-concept studies of new drugs and drug combinations

aiming for clinical trials in the pediatric population (8). Many

NB targets identified in patients have been tested in PD models

in vitro and in vivo, allowing the evaluation of specific responses

in tumors harboring different underlying, molecular alterations.

Some known genetic vulnerabilities in NB are still under

investigation, while others, for example ALK, have been

clinically tested (71, 72). Table 1 presents an overview of

recent preclinical drug investigations of established and novel

NB targets that were identified and tested in PD models.

High-throughput screens (HTS) in vitro can facilitate the

discovery of specific targets and/or drugs using CRISPR/siRNA

or phenotypic response. Most screening approaches still use

conventional cell lines, but more recently PDX-derived cultures

of high-risk NB have been used for the initial identification, for

example for a KSP inhibitor (77). Compounds identified in drug

screens can be further verified in vivo in PDXs.

In our experience, PD models show high intra-model

variability in drug response (46, 75, 77) and are often less

responsive to different treatments than conventional cell lines

and xenografts [discussed also in (29)]. The lower sensitivity of

PD models could indicate an even smaller effect in patients, thus
frontiersin.org

https://doi.org/10.3389/fonc.2022.1085270
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Aaltonen et al. 10.3389/fonc.2022.1085270
TABLE 1 Selected preclinical drug testing studies using NB patient-derived models.

Target Description PD in
vivo

PD in
vitro

References

Small molecules

CNR2, MAPK8 TargetTranslator tool for drug discovery ✓ ✓ Almstedt et al., 2020 (52)

SHP2 Targeting tumors with low expression of NF1 ✓ ✓ Cai et al., 2022 (73)

ROS (ferroptosis) Antioxidant pathways inhibition ✓ ✓ Floros et al., 2021 (74)

PIM/PI3K/mTOR New triple inhibitor ✓ ✓ Mohlin et al., 2019 (75)

RAS/antimitotic Antimitotic effects of rigosertib ✓ ✓ Radke et al., 2021 (76)

KSP (Eg5)
HTS identifying new inhibitors, complete response
in PDXs

✓ ✓ Hansson et al., 2020 (77)

KSP (Eg5) New oral inhibitor, liver metastasis model ✓ – Masanas et al., 2020 (78)

Antimitotic New inhibitor in taxane- and chemoresistant models ✓ – Grohman et al., 2021 (79)

PARP, ATM Targeting DNA damage, ATRX mutant NB ✓ – George et al., 2020 (80)

PP2A New PP2A activators ✓ – Bownes et al., 2022 (81)

TOP2B HTS, redefining MoA of an inhibitor ✓ – Pan et al., 2021 (82)

CHK1 Prexasertib with chemotherapy in NB ✓ – Lowery et al., 2019 (83)

ALK, TRK, JAK2/STAT, Src/FAK Multikinase targeting ✓ –
O´Donohue et al., 2021
(84)

PHGDH LC-MS-based proteomics, MYCN-associated targets ✓ – Arlt et al., 2021 (85)

PGDB5 DNA transposase inhibition impairs DNA repair ✓ – Henssen et al., 2017 (86)

ALK New molecule: lorlatinib ✓ – Infarinato et al., 2016 (87)

CAIX/CAXII New inhibitor, organotypic slice culture – ✓ Huo et al., 2022 (88)

Drug combinations

CHK1+RRM2 Synergistic effects on replication stress ✓ ✓ Nunes et al., 2022 (89)

ALK+chemo Crizotinib combination with chemotherapy ✓ ✓ Krytska et al., 2016 (90)

ALK+CDK4/6
Combination screen identifying new synergistic
targets

✓ ✓ Wood et al., 2017 (91)

ALK+PIM1 CRISPR screen, targeting ALK resistance ✓ ✓ Trigg et al., 2019 (92)

BCL2+MDM2; BCL2+ CYCLO/TOPO; BCL2
+MCL1

Venetoclax in combinations with clinically relevant
agents

✓ ✓ Dalton et al., 2021 (93)

BCL2+ferentidine Synergistic effects of venetoclax and ferentidine ✓ ✓ Nguyen et al., 2019 (94)

MGMT+TMZ+TOP2; Combination of drugs targeting DNA damage ✓ ✓ Hindle et al., 2021 (95)

HDAC+DOXO Rapid zebra fish screen ✓ ✓ Wrobel et al., 2020 (96)

PLK1/BRD4 Screen of dual inhibitors ✓ – Timme et al., 2020 (97)

BCL-2+Aurora A Screen of new venetoclax combinations ✓ – Ham et al., 2016 (98)

TBX2 TF addiction is targeted by BETi + CDK7i – ✓ Decaester et al., 2018 (99)

Immunotherapy & other

ALK Antibody-toxin conjugate directed towards ALK ✓ ✓ Sano et al., 2019 (100)

Oncolytic therapeutics oHSV expressing mIL-12 ✓ ✓ Quinn et al., 2022 (101)

aNK cells+anti-GD2 Residual disease targeting ✓ – Barry et al., 2019 (102)

(Continued)
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providing important information with respect to optimal

clinical implementation.

3.2.2 Application for precision medicine
in the clinic

The possibility of identifying actionable genetic alterations in

pediatric cancers has contributed to optimism that the approach

is useful for clinical trial design and target identification for high-

risk and relapsed pediatric tumors, including high-risk NB (71,

72). Langenberg et al. thoroughly summarized current pediatric

precision medicine programs around the world (106). Many of

the programs/consortia [Pediatric MATCH (US) or INFORM

(Europe)] have enabled patients to receive treatments tailored to

the individual tumor’s molecular profile (107–109). However,

relatively few identified mutations (<30%) have led to targeted

therapies (106, 107, 110). This highlights the need for molecular

profiling of patients to be backed up by real-time functional

testing of drug sensitivities in PD models.

Both the PIVOT (US, earlier PPTC) and ITCC-P4 (Europe)

repositories hold PDXs. Considering that PDXs take time to

establish, co-clinical avatar studies are generally very difficult.

Nevertheless, the rarity of pediatric cancers and scarcity of

models representing specific subtypes within pediatric tumors

makes those repositories a valuable resource for the accelerated

development and translation of novel therapeutics into early

phase trials (34, 111, 112). Lau et al. developed a pediatric

precision medicine platform (including a few high-risk NBs)

of PDX models and HTS in PDOs, observing a correlation

between PDX results, HTS-PDOs, and the clinical responses in

patients (113). Importantly, the addition of functional drug

testing to a genome-only analysis increased the number of

patients with drug options by also identifying drug sensitivities

not associated with molecular hallmarks (113).

Real-time drug testing for the immediate benefit of the

patient is likely to be more feasible in PDO models where the

time for establishment is much shorter and the readout can be

performed with a higher throughput. The COMPASS
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consortium (Clinical implementation Of Multidimensional

PhenotypicAl drug SenSitivities in paediatric precision

oncology) is a large-scale effort to implement HTS in PD

models. This European collaborative platform aims to

implement PDO screening for individualized drug sensitivity

assessment and therapy (114). Recently, the network also

standardized drug scoring tools and developed machine

learning approaches (115, 116).
4 Current and future
model optimization

Although the successful establishment of PD NB models is

encouraging, certain aspects can still be improved. For example,

the distribution and function of the extracellular matrix (ECM)

has been shown to influence NB progression in patient samples

(117, 118). Consistently, modulation of ECM components

induces specific cell behaviors of PD NB cultures (63).

Optimization of ECM conditions could thus contribute to

improved NB modelling.

The lack of a complete immune system is a limitation of

most PDX models, since PD tumors are generally implanted in

immunocompromised mouse strains (e.g., NSG) to permit

tumor engraftment. Reconstitution of a humanized immune

system, for example by injection of human hematopoietic stem

cells into sub-lethally irradiated mice, could improve the

immune status of the models (119). A technically advanced

humanized mouse strain (MISTRG) supports the intrinsic

development of human natural killer (NK) cells after bone

marrow transplantation (120). When combined with

orthotopic NB PDXs, these mice have allowed the

identification of immune modulating functions in common

between PDXs and patient tumors and suggest that the model

is useful for immuno-oncology studies in general and in NB in

particular (121). The use of PDO and stromal/immune cell co-

cultures can be applied in vitro, where it has been very
TABLE 1 Continued

Target Description PD in
vivo

PD in
vitro

References

IL-15+anti-GD2 Substitution of IL15 for IL2 to limit toxicities ✓ – Nguyen et al., 2019 (103)

IL-15/21+anti-GD2 GD2-targeted IL delivery in orthotopic models ✓ – Nguyen et al., 2022 (104)

TOP1+anti-GD2 GD2-targeted nanoparticle delivery of SN-38 ✓ –
Monderrubio et al., 2017
(105)
ALK, anaplastic lymphoma kinase; ATM, ataxia-telangiectasia mutated serine/threonine kinase; BCL, B-cell lymphoma; BET, bromodomain and extra-terminal domain; BRD4,
bromodomain containing 4; CA, carbonic anhydrase; CDK, cyclin-dependent kinase; CHK, checkpoint kinase; CNR, cannabinoid receptor; CYCLO, cyclophosphamide; DOXO,
doxycycline; FAK, focal adhesion kinase; GD2, disialoganglioside; HDAC, histone deacetylase; IL, interleukin; JAK, Janus kinase; KSP, kinesin spindle protein; MAPK, mitogen-
activated protein kinase; MCL, induced myeloid leukemia cell differentiation; MDM, E3 ubiquitin-protein ligase; MGMT, O-6-methylguanine-DNAmethyltransferase; oHSV, oncolytic
herpes simplex virus; mTOR, mammalian target of rapamycin; PARP, poly (ADP-ribose) polymerase; PGBD5, PiggyBac transposable element derived 5; PHGDH, phosphoglycerate
dehydrogenase; PI3K, phosphoinositide 3-kinases; PIM, Pim-1 proto-oncogene, serine/threonine kinase; PLK, polo-like kinase; PP2A, protein phosphatase 2; ROS, reactive oxygen
species; RRM2, ribonucleotide reductase regulatory subunit M2; SHP2, protein tyrosine phosphatase; STAT, signal transducer and activator of transcription; TBX, T-box transcription
factor; TF, transcription factor; TOP2, topoisomerase II alpha; TOPO, topotecan; TRK, tropomyosin receptor kinase.
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challenging to optimize culture conditions for multiple cell types

over longer periods (122, 123). Co-cultures of NB organoids and

peripheral blood mononuclear cells (from a healthy donor) were

recently used to test a novel immunotherapy (124).

Innovative technological advances have suggested that

microfluidics (lab-on-a-chip) and bioprinting may provide

future systems for studying tumor cell and stromal/immune

cell interactions. Functional short-time cultures of both tumor

cells and immune cells in a microfluidic system have been

reported for adult cancers (125, 126) and might be applicable

also to pediatric cancers. Very recently, the first bioprinted,

vascularized NB microenvironment on a fluidic chip was

reported (127). Implantation of cell line-derived NB spheroids

led to NB cell survival for two weeks and successful micro-vessel

infiltration of the spheroids (127). A different study managed to

establish PD NB organotypic slice cultures that could potentially

preserve an intact NB tumor microenvironment (88). This study

used a perfusion-based bioreactor to force medium through the

tissue, thereby providing continuous nutrient delivery to the

whole tumor.

Orthotopic NB PDXs retain spontaneous metastatic capacity

in vivo to the lungs, liver, and bone marrow, mimicking the

entire process from primary tumor growth to invasion and

metastasis (37, 39). However, the TME is generally murine

(38) and there are uncertainties about cross reactivity between

human NB cells and the mouse TME. The presence of human

mesenchymal stem cells can increase growth and metastasis of

NB cells in vivo (128), suggesting species preference. Recent

advances in tissue engineering have produced in vivo models of

humanized bone (so-called ossicles) in mice. Implanted PDX-

derived NB cells form osteolytic tumor lesions in the ossicles and

display higher and faster engraftment rates than in mouse bone

(129). This model could thus be valuable for the investigation of

human NB growth and treatment responses in a humanized

metastatic niche.

Further optimization of PD models to account for more

patient-like microenvironmental factors both in vivo and in vitro

is ongoing and will likely contribute to improved translatability.
5 Conclusions

The use of clinically relevant preclinical models is of

immense importance in childhood cancers, such as high-risk

NB, where the access to patient material is limited. PD models

reflect the characteristics of the tumor of origin better than

conventional in vivo and in vitro models. Nevertheless, ongoing

efforts may further optimize their translational relevance.
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Existing NB PDXs and PD cultures have been – and continue

to be – used to decipher therapy resistance and for target

identification and drug testing. Future studies will need to

investigate how PD models can be used to exploit phenotypic

plasticity and NB cell states in preclinical studies to better benefit

NB patients.
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84. O'Donohue TJ, Ibáñez G, Coutinho DF, Mauguen A, Siddiquee A, Rosales
N, et al. Translational strategies for repotrectinib in neuroblastoma. Mol Cancer
Ther (2021) 20(11):2189–97. doi: 10.1158/1535-7163.MCT-21-0126

85. Arlt B, Zasada C, Baum K, Wuenschel J, Mastrobuoni G, Lodrini M, et al.
Inhibiting phosphoglycerate dehydrogenase counteracts chemotherapeutic efficacy
against MYCN-amplified neuroblastoma. Int J cancer (2021) 148(5):1219–32. doi:
10.1002/ijc.33423

86. Henssen AG, Reed C, Jiang E, Garcia HD, von Stebut J, MacArthur IC, et al.
Therapeutic targeting of PGBD5-induced DNA repair dependency in pediatric solid
tumors. Sci Transl Med (2017) 9(414):eaam9078. doi: 10.1126/scitranslmed.aam9078

87. Infarinato NR, Park JH, Krytska K, Ryles HT, Sano R, Szigety KM, et al. The
ALK/ROS1 inhibitor PF-06463922 overcomes primary resistance to crizotinib in
ALK-driven neuroblastoma. Cancer discovery (2016) 6(1):96–107. doi: 10.1158/
2159-8290.CD-15-1056

88. Huo Z, Bilang R, Supuran CT, von der Weid N, Bruder E, Holland-Cunz S,
et al. Perfusion-based bioreactor culture and isothermal microcalorimetry for
preclinical drug testing with the carbonic anhydrase inhibitor SLC-0111 in
patient-derived neuroblastoma. Int J Mol Sci (2022) 23(6):3128. doi: 10.3390/
ijms23063128

89. Nunes C, Depestel L, Mus L, Keller KM, Delhaye L, Louwagie A, et al. RRM2
enhances MYCN-driven neuroblastoma formation and acts as a synergistic target
with CHK1 inhibition. Sci Adv (2022) 8(28):eabn1382. doi: 10.1126/sciadv.abn1382

90. Krytska K, Ryles HT, Sano R, Raman P, Infarinato NR, Hansel TD, et al.
Crizotinib synergizes with chemotherapy in preclinical models of neuroblastoma.
Clin Cancer Res an Off J Am Assoc Cancer Res (2016) 22(4):948–60. doi: 10.1158/
1078-0432.CCR-15-0379

91. Wood AC, Krytska K, Ryles HT, Infarinato NR, Sano R, Hansel TD, et al.
Dual ALK and CDK4/6 inhibition demonstrates synergy against neuroblastoma.
Clin Cancer Res an Off J Am Assoc Cancer Res (2017) 23(11):2856–68. doi: 10.1158/
1078-0432.CCR-16-1114

92. Trigg RM, Lee LC, Prokoph N, Jahangiri L, Reynolds CP, Amos Burke GA,
et al. The targetable kinase PIM1 drives ALK inhibitor resistance in high-risk
neuroblastoma independent of MYCN status.Nat Commun (2019) 10(1):5428. doi:
10.1038/s41467-019-13315-x

93. Dalton KM, Krytska K, Lochmann TL, Sano R, Casey C, D'Aulerio A, et al.
Venetoclax-based rational combinations are effective in models of MYCN-
amplified neuroblastoma. Mol Cancer Ther (2021) 20(8):1400–11. doi: 10.1158/
1535-7163.MCT-20-0710

94. Nguyen TH, Koneru B, Wei SJ, Chen WH, Makena MR, Urias E, et al.
Fenretinide via NOXA induction, enhanced activity of the BCL-2 inhibitor
venetoclax in high BCL-2-Expressing neuroblastoma preclinical models. Mol
Cancer Ther (2019) 18(12):2270–82. doi: 10.1158/1535-7163.MCT-19-0385

95. Hindle A, Koneru B, Makena MR, Lopez-Barcons L, Chen WH, Nguyen
TH, et al. The O6-methyguanine-DNA methyltransferase inhibitor O6-
benzylguanine enhanced activity of temozolomide + irinotecan against models of
high-risk neuroblastoma. Anticancer Drugs (2021) 32(3):233–47. doi: 10.1097/
CAD.0000000000001020

96. Wrobel JK, Najafi S, Ayhan S, Gatzweiler C, Krunic D, Ridinger J, et al.
Rapid In vivo validation of HDAC inhibitor-based treatments in neuroblastoma
zebrafish xenografts. Pharm (Basel) (2020) 13(11):345. doi: 10.3390/ph13110345

97. Timme N, Han Y, Liu S, Yosief HO, Garcıá HD, Bei Y, et al. Small-molecule
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