434 research outputs found
ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2
Homologous recombination (HR) and non‐homologous end joining (NHEJ) represent distinct pathways for repairing DNA double‐strand breaks (DSBs). Previous work implicated Artemis and ATM in an NHEJ‐dependent process, which repairs a defined subset of radiation‐induced DSBs in G1‐phase. Here, we show that in G2, as in G1, NHEJ represents the major DSB‐repair pathway whereas HR is only essential for repair of ∼15% of X‐ or γ‐ray‐induced DSBs. In addition to requiring the known HR proteins, Brca2, Rad51 and Rad54, repair of radiation‐induced DSBs by HR in G2 also involves Artemis and ATM suggesting that they promote NHEJ during G1 but HR during G2. The dependency for ATM for repair is relieved by depleting KAP‐1, providing evidence that HR in G2 repairs heterochromatin‐associated DSBs. Although not core HR proteins, ATM and Artemis are required for efficient formation of single‐stranded DNA and Rad51 foci at radiation‐induced DSBs in G2 with Artemis function requiring its endonuclease activity. We suggest that Artemis endonuclease removes lesions or secondary structures, which inhibit end resection and preclude the completion of HR or NHEJ
Systemic and immune manifestations in myelodysplasia: a multicenter retrospective study
OBJECTIVE: The presence of systemic and/or immune manifestations in myelodysplasia has been currently reported. The influence of these manifestations on the natural outcome of myelodysplastic syndrome has to be considered. We present a multicenter retrospective study (2002-2009) of patients with myelodysplastic syndrome disclosing systemic and/or immune manifestations. METHODS: Forty-six patients with myelodysplasia presenting with systemic and/or immune manifestations were compared in terms of survival with 189 patients with myelodysplasia lacking these features. RESULTS: The clinical picture in these cases consisted of fever (13%), arthralgia or arthritis (13%), and cutaneous manifestations (67%). Four cases of systemic vasculitis have been reported in our series, and they have a worse prognosis. Immune anomalies were recorded in 29% of the cases, and the presence of cryoglobulins was also associated with a worse prognosis. CONCLUSION: A difference in survival between patients with myelodysplastic syndrome with systemic manifestations and patients lacking these manifestations has been observed in the presence of systemic vasculitis and/or cryoglobulins
Statistical Gaussian Model of Image Regions in Stochastic Watershed Segmentation
International audienceStochastic watershed is an image segmentation technique based on mathematical morphology which produces a probability density function of image contours. Estimated probabilities depend mainly on local distances between pixels. This paper introduces a variant of stochastic watershed where the probabilities of contours are computed from a Gaussian model of image regions. In this framework, the basic ingredient is the distance between pairs of regions, hence a distance between normal distributions. Hence several alternatives of statistical distances for normal distributions are compared, namely Bhattacharyya distance, Hellinger metric distance and Wasserstein metric distance
The Spine of the Cosmic Web
We present the SpineWeb framework for the topological analysis of the Cosmic
Web and the identification of its walls, filaments and cluster nodes. Based on
the watershed segmentation of the cosmic density field, the SpineWeb method
invokes the local adjacency properties of the boundaries between the watershed
basins to trace the critical points in the density field and the separatrices
defined by them. The separatrices are classified into walls and the spine, the
network of filaments and nodes in the matter distribution. Testing the method
with a heuristic Voronoi model yields outstanding results. Following the
discussion of the test results, we apply the SpineWeb method to a set of
cosmological N-body simulations. The latter illustrates the potential for
studying the structure and dynamics of the Cosmic Web.Comment: Accepted for publication HIGH-RES version:
http://skysrv.pha.jhu.edu/~miguel/SpineWeb
AFTER, the front end ASIC of the T2K Time Projection Chambers
The T2K (Tokai-to-Kamioka) experiment is a long baseline neutrino oscillation experiment in Japan. A near detector, located at 280m of the production target, is used to characterize the beam. One of its key elements is a tracker, made of three Time Projection Chambers (TPC) read by Micromegas endplates. A new readout system has been developed to collect, amplify, condition and acquire the data produced by the 124,000 detector channels of these detectors. The front-end element of this system is a a new 72-channel application specific integrated circuit. Each channel includes a low noise charge preamplifier, a pole zero compensation stage, a second order Sallen-Key low pass filter and a 511-cell Switched Capacitor Array. This electronics offers a large flexibility in sampling frequency, shaping time, gain, while taking advantage of the low physics events rate of 0.3 Hz. We detail the design and the performance of this ASIC and report on the deployment of the frond-end electronics on-site
Co-operation of BRCA1 and POH1 relieves the barriers posed by 53BP1 and RAP80 to resection
In G2 phase cells, DNA double-strand break repair switches from DNA non-homologous end-joining to homologous recombination. This switch demands the promotion of resection. We examine the changes in 53BP1 and RAP80 ionizing radiation induced foci (IRIF) in G2 phase, as these are factors that restrict resection. We observed a 2-fold increase in the volume of 53BP1 foci by 8 h, which is not seen in G1 cells. Additionally, an IRIF core devoid of 53BP1 arises where RPA foci form, with BRCA1 IRIF forming between 53BP1 and replication protein A (RPA). Ubiquitin chains assessed using a-FK2 antibodies
are similarly repositioned. Repositioning of all these components requires BRCA1’s BRCT but not the ring finger domain. 53BP1, RAP80 and ubiquitin chains are enlarged following POH1 depletion by small interfering RNA, but a devoid core does not form and RPA foci formation is impaired. Co-depletion of POH1 and RAP80, BRCC36 or ABRAXAS allows establishment of the 53BP1 and ubiquitin chain-devoid core. Thus, the barriers posed by 53BP1 and RAP80 are relieved by BRCA1 and POH1, respectively. Analysis of combined depletions shows that these represent distinct but interfacing barriers to promote loss of ubiquitin chains in the IRIF core, which is required for subsequent resection. We propose a model whereby BRCA1 impacts on 53BP1 to allow access of POH1 to RAP80. POH1-dependent removal of RAP80 within the IRIF core enables degradation of ubiquitin chains, which
promotes loss of 53BP1. Thus, POH1 represents a novel component regulating the switch from nonhomologous end-joining to homologous recombination
Polo-like kinase 3 regulates CtIP during DNA double-strand break repair in G1
DNA double-strand breaks (DSBs) are repaired by nonhomologous end joining (NHEJ) or homologous recombination (HR). The C terminal binding protein–interacting protein (CtIP) is phosphorylated in G2 by cyclin-dependent kinases to initiate resection and promote HR. CtIP also exerts functions during NHEJ, although the mechanism phosphorylating CtIP in G1 is unknown. In this paper, we identify Plk3 (Polo-like kinase 3) as a novel DSB response factor that phosphorylates CtIP in G1 in a damage-inducible manner and impacts on various cellular processes in G1. First, Plk3 and CtIP enhance the formation of ionizing radiation-induced translocations; second, they promote large-scale genomic deletions from restriction enzyme-induced DSBs; third, they are required for resection and repair of complex DSBs; and finally, they regulate alternative NHEJ processes in Ku−/− mutants. We show that mutating CtIP at S327 or T847 to nonphosphorylatable alanine phenocopies Plk3 or CtIP loss. Plk3 binds to CtIP phosphorylated at S327 via its Polo box domains, which is necessary for robust damage-induced CtIP phosphorylation at S327 and subsequent CtIP phosphorylation at T847
On morphological hierarchical representations for image processing and spatial data clustering
Hierarchical data representations in the context of classi cation and data
clustering were put forward during the fties. Recently, hierarchical image
representations have gained renewed interest for segmentation purposes. In this
paper, we briefly survey fundamental results on hierarchical clustering and
then detail recent paradigms developed for the hierarchical representation of
images in the framework of mathematical morphology: constrained connectivity
and ultrametric watersheds. Constrained connectivity can be viewed as a way to
constrain an initial hierarchy in such a way that a set of desired constraints
are satis ed. The framework of ultrametric watersheds provides a generic scheme
for computing any hierarchical connected clustering, in particular when such a
hierarchy is constrained. The suitability of this framework for solving
practical problems is illustrated with applications in remote sensing
- …
