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ABSTRACT

We present the SpineWeb framework for the topological analysis of the Cosmic Web and the identification of its
walls, filaments, and cluster nodes. Based on the watershed segmentation of the cosmic density field, the SpineWeb
method invokes the local adjacency properties of the boundaries between the watershed basins to trace the critical
points in the density field and the separatrices defined by them. The separatrices are classified into walls and the
spine, the network of filaments and nodes in the matter distribution. Testing the method with a heuristic Voronoi
model yields outstanding results. Following the discussion of the test results, we apply the SpineWeb method to a
set of cosmological N-body simulations. The latter illustrates the potential for studying the structure and dynamics
of the Cosmic Web.
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1. INTRODUCTION

The large-scale distribution of matter revealed by galaxy sur-
veys features a complex network of interconnected filamentary
galaxy associations. This network, which has become known as
the Cosmic Web (Bond et al. 1996), contains structures from a
few megaparsecs up to tens and even hundreds of megaparsecs
of size. The weblike spatial arrangement of galaxies and mass
into elongated filaments, sheetlike walls, and dense compact
clusters, the existence of large near-empty void regions and the
hierarchical nature of this mass distribution—marked by sub-
structure over a wide range of scales and densities—are its three
major characteristics. Its appearance has been most dramatically
illustrated by the recently produced maps of the nearby cosmos,
the 2dFGRS, the Sloan Digital Sky Survey (SDSS), and the
Two Micron All Sky Survey redshift surveys (e.g., Colless et al.
2003; Huchra et al. 2005).

In this paper, we introduce the SpineWeb formal-
ism for analyzing the structure and topology of the
Cosmic Web. It identifies the sheets and filaments in the Cos-
mic Web, along with the large underdense void regions, and
their mutual connection into the Spine of the cosmic matter
distribution. The method is based on the watershed transform
(WST; Beucher 1982), and is largely free of user-specific pa-
rameters and artificial smoothing scale(s). Its output will enable
the study of the physical properties and dynamics of the individ-
ual morphological components, along with their topology and
hierarchical characteristics.

1.1. The Cosmic Web

The Cosmic Web is the most salient manifestation of the
anisotropic nature of gravitational collapse, the motor behind
the formation of structure in the cosmos (Peebles 1980). N-body
computer simulations have profusely illustrated how a primor-
dial field of tiny Gaussian density perturbations transforms into a
pronounced and intricate filigree of filamentary features, dented
by dense compact clumps at the nodes of the network (Colberg
et al. 2005; Springel et al. 2005). The filaments connect into
the cluster nodes and act as the transport channels along which
matter flows into the clusters.

Fundamental understanding of anisotropic collapse on cos-
mological scales came with the seminal study by Zeldovich
(1970), who recognized the key role of the large-scale tidal
force field in shaping the Cosmic Web (also see Icke 1973).
The collapse of a primordial cloud (dark) matter passes through
successive stages, first assuming a flattened sheetlike configura-
tion as it collapses along its shortest axis. This is followed by a
rapid evolution toward an elongated filament as the intermediate
axis collapses and, if collapse continues along the longest axis,
may ultimately produce a dense, compact and virialized cluster
or halo. The hierarchical setting of these processes, occurring
simultaneously over a wide range of scales and modulated by
the expansion of the universe, complicates the picture consid-
erably. Recent state-of-the-art computer experiments like the
Millennium simulation (Springel et al. 2005) clearly show the
hierarchical nature in which not only the clusters build up but
also the filamentary network itself (see Aragón-Calvo et al.
2007a).

The Cosmic Web theory of Bond et al. (1996) succeeded in
synthesizing all relevant aspects into a coherent dynamical and
evolutionary framework. It is based on the realization that the
outline of the Cosmic Web may already be recognized in the
primordial density field. The statistics of the primordial tidal
field explains why the large-scale universe looks predominantly
filamentary and why in overdense regions sheetlike membranes
are only marginal features (Pogosyan et al. 1998). Of key
importance is the observation that the rare high peaks, which
will eventually emerge as clusters, are the dominant agents for
generating the large-scale tidal force field: it is the clusters
which weave the cosmic tapestry of filaments (Bond et al.
1996; van de Weygaert & Bertschinger 1996; van de Weygaert
& Bond 2008a). They cement the structural relations between
the components of the Cosmic Web and themselves form the
junctions at which filaments tie up. This relates the strength and
prominence of the filamentary bridges to the proximity, mass,
shape, and mutual orientation of the generating cluster peaks:
the strongest bridges are those between the richest clusters that
stand closely together and point into each other’s direction.

The emerging picture is one of a primordially and hierarchi-
cally defined network whose weblike topology is imprinted over
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a wide spectrum of scales. Weblike patterns on ever larger scales
get to dominate the density field as cosmic evolution proceeds,
and as small-scale structures merge into larger ones. Within
the gradually emptying void regions, however, the topological
outline of the early weblike patterns remains largely visible.

1.2. Closing in on the Cosmic Web

Despite a large variety of attempts, as yet no generally ac-
cepted descriptive framework has emerged for the objective and
quantitative analysis of the geometry and topology of the Cos-
mic Web. The great complexity of both the individual structures
and their connectivity, the lack of structural symmetries, its in-
trinsic multiscale nature, and the wide range of densities that
one finds in the cosmic matter distribution has prevented the use
of simple and straightforward techniques.

Historically, the quantitative analysis of the Cosmic Web
has been dominated by a description in terms of statistical
measures of clustering of galaxies and matter. While correlation
functions have been the mainstay of the cosmological analysis
of large-scale structure, a direct interpretation in terms of the
patterns and texture of the Cosmic web has largely remained
elusive. Over the years a variety of heuristic measures have been
forwarded to analyze specific aspects of the spatial patterns in
the large-scale universe, but only in recent years there have
been attempts toward developing complete descriptors of the
intricate spatial patterns that define the Cosmic Web. Nearly
without exception these methods borrow extensively from other
branches of science such as image processing, mathematical
morphology, computational geometry, and medical imaging.

Noteworthy examples include filament detection with the help
of the Candy model (Stoica et al. 2005) and wavelet analysis of
the Cosmic Web (Martı́nez et al. 2005). Several methods seek
to relate morphological features to singularities in the density
field, usually invoking information on the gradient and Hessian
of the density field, or of the tidal field (see, e.g., Sousbie et al.
2008a; Aragón-Calvo et al. 2007a, 2007b; Hahn et al. 2007a,
2007b; Bond et al. 2010). A classification scheme on the basis
of the manifolds in the tidal field—involving all morphological
features in the cosmic matter distribution—has been presented
by Hahn et al. (2007a, 2007b) and Forero-Romero et al. (2008).
However, its success may depend strongly on the correct choice
of the smoothing scale. Another concept addressing the gradient
and Hessian of the density field is that of the skeleton analysis, a
direct application of Morse theory to cosmological density fields
(see Colombi et al. 2000; Pogosyan et al. 2009). The skeleton
formalism has been developed for the morphological analysis
of the megaparsec Cosmic Web, in redshift surveys like SDSS
as well as in N-body simulations (Novikov et al. 2006; Sousbie
et al. 2008a, 2008b, 2009). Its present implementation refers
to features identified at one single specific scale and suffers
from Gaussian smoothing. The multiscale nature of the cosmic
matter distribution is explicitly addressed by the multiscale
morphology filter, which is based on a scale-space analysis of
the Hessian of the density field (Aragón-Calvo et al. 2007a,
2007b) to identify cluster, filaments, and sheets on the scale
where they are locally most prominent.

1.3. Watershed and Cosmic Spine

One technique that implicitly addresses the topology of the
Cosmic Web is the Watershed Void Finder (WVF) developed by
Platen et al. (2007). The WVF is an application of the WST for
the identification of underdense basins in the megaparsec-scale

matter distribution. The WSTs segment the density field into
isolated basins and delineate the boundaries of cosmological
voids.

The method presented in this paper is the natural extension
of the WVF. It includes the WST into a wider context as a
framework for studying both the morphology and topology of
the Cosmic Web and its various constituents. The result is the
SpineWeb method, a complete framework for the identification
of voids, walls, and filaments. Via the practical role of the WST
in computing the Morse complex it is intimately related to
Morse theory, in which it finds its mathematical foundation.
It is important to note that although Morse theory can be used
to describe the same topology traced by the SpineWeb method
there is not a univocal relation between the two as the SpineWeb
is based on the observed properties of the Cosmic Web.

An important aspect of our method is that it is an intrinsically
scale-free method, starting from a scale-free reconstruction
of the density field. We use the Delaunay Tessellation Field
Estimator (DTFE) method of Schaap & van de Weygaert (2000),
which guarantees an optimal and unbiased representation of
the hierarchical nature and anisotropic morphology of cosmic
structure (see van de Weygaert & Schaap 2009, for an extensive
description). Having guaranteed the capability of invoking a
full scale-free scale-space representation of cosmic structure,
our watershed procedure not only traces the outline of filaments
and sheets, but may also be extended toward doing so over a
range of scales in order to address their hierarchical structure.

1.4. Outline

The principal rationale behind the SpineWeb analysis of
the cosmic matter distribution is the interest in relating the
geometry of the matter and galaxy distribution in a more
meaningful fashion to the underlying dynamical evolution. One
particular aspect of this dynamically motivated disentanglement
of structure is the attempt to identify various evolutionary stages
of the tidally induced anisotropic collapse of structure in the
universe.

In this paper, we will focus specifically on the description
of the basic SpineWeb formalism, confined to a density field
sampled on a regular grid. We start by discussing the topo-
logical background of our study in Section 2, focusing on the
WST, its connection to the general context of Morse theory,
and the related issues of practical interest to the SpineWeb
formalism. The overall cosmological background of the struc-
ture, formation, and dynamics of the Cosmic Web follows in
Section 3, among others to establish the link between the struc-
tures identified by the SpineWeb technique and the filamen-
tary identity of tidal bridges in the theory of the Cosmic Web
(Zeldovich 1970; Bond et al. 1996). The technical aspects of the
SpineWeb formalism are outlined in some detail in Section 4.
Subsequently, the formalism is tested by applying it to two dif-
ferent classes of spatial particle distributions. The first testbed
concerns two simple heuristic Voronoi clustering models which
model aspects of cellular and/or weblike spatial distributions.
Visual and quantitative tests are described in Section 5. The
operation of SpineWeb in a more realistic setting of a ΛCDM
simulation is the subject of Section 6. In this section, we also
stress the fundamental differences between a structural selec-
tion based on density thresholds or one based on topological
criteria. To illustrate the potential for analyzing cosmological
structures, in Section 7, we shortly describe three quantitative
measures for the matter distribution in the ΛCDM simulation we
used for testing. Finally, Section 8 summarizes our results and
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discusses prospects and further developments of the SpineWeb
formalism.

2. WATERSHED SEGMENTATION OF THE COSMIC WEB

When studying the topological and morphological structure
of the cosmic matter distribution in the Cosmic Web, it is
convenient to draw the analogy with a landscape (see Figure 1,
top row). Valleys represent the large underdense voids that define
the cells of the Cosmic Web. Their boundaries are sheets and
ridges, defining the network of walls, filaments, and clusters
that defines the Cosmic Web (cf. top panels, Figure 1).

2.1. The Watershed Transform

The WST is one of the most common methods used in
image analysis for segmenting images into distinct patches
and features. It is a concept defined within the context of
mathematical morphology and was first introduced by Beucher
& Lantuejoul (1979). The basic idea behind the WST stems
from geophysics, where it is used to delineate the boundaries of
separate domains, i.e., basins into which yields of e.g., rainfall
will collect. The WST is formed by the ridges and sheets
surrounding the watershed basins and includes a subset of all
the critical points in the density field.

The word watershed finds its origin in the analogy of the
procedure with that of a landscape being flooded by a rising
level of water. Suppose we have a surface in the shape of a
landscape (cf. top right panel, Figure 1). The surface is pierced
at the location of each of the minima. As the water level rises a
growing fraction of the landscape will be flooded by the water in
the expanding basins. Ultimately basins will meet at the ridges
defined by saddle-points and maxima in the density field. The
final result of the completely immersed landscape is a division
of the landscape into individual cells, separated by ridge dams
(see the left bottom panel, Figure 1).

2.2. A Watershed Search for Voids

The WST was first introduced in a cosmological context
as an objective technique to identify and outline voids in the
cosmic matter and galaxy distribution (Platen et al. 2007; Platen
2009). Following the density field–landscape analogy, the WVF
method identifies the underdense void patches in the cosmic
matter distribution with the watershed basins. The method is
parameter free in case there is no noise in the data.

A major advantage of the WVF method is its independence
of assumptions on the shape and size of voids (see Colberg
et al. 2008 for a comparison of its performance with a variety
of void finding algorithms). Sharing this virtue with a simi-
lar tessellation-based void finding method, ZOBOV (Neyrinck
2008), WVF is particularly suited for the analysis of the hier-
archical void distribution expected in the commonly accepted
cosmological scenarios.

2.3. Watersheds and Landscape Gradients

Extrapolating its application to other areas of interest, the
implementation of the WST may also be seen as a practical
instrument for the segmentation of surfaces and volumes on
the basis of the topological structure of the “landscape” f (x).
To trace the topological structure of a field f (x), we need to
investigate the structure of the gradient field of the landscape,
∇f (for an excellent introduction to computational topology,
we refer to Edelsbrunner & Harer 2010).

2.3.1. Gradient Field and Integral Lines

The gradient delineates a smooth vector field, which vanishes
at critical points,

∇f (xk) = 0 . (1)

The integral lines or slope lines represent the flow along
the gradient field ∇f between the critical points. On the
basis of these connections one may infer a variety of spatial
segmentations (see, e.g., Cayley 1859; Maxwell 1870; Eberly
1994; Furst 2002; Edelsbrunner et al. 2003a, 2003b; Danovaro
et al. 2003; Gyulassy et al. 2005). One particular segmentation
is the WST, which segments the landscape f into regions of
uniform local gradient behavior: the watershed basin j consists
of the collection of points x that are closer in the topographic
distance T (x, yj ),

T (x, yj ) ≡ inf
∫

Γ
|∇f (γ (s))|ds (2)

to the defining minimum yj of the basin than to any of the other
minima. In this definition, the integral is the pathlength along the
integral line, the line along whose path the tangent at each point
is parallel to the local gradient ∇f . The watershed itself then
consists of the ridge lines that delimit the boundaries between
basins in the terrain.

An illustration of the close link between the gradient field
and structural features in the universe is offered by the right-
hand panel of Figure 2. The image shows that the integral lines
that define the boundaries of adjacent valleys are in fact the
watersheds. It also reveals the intimate relationship between
the critical points in the flow field and the nodes, filaments
and voids in the landscape: maxima are found at nodes of the
weblike network of watershed ridges, minima at the centers
of the void cells, while saddle points are to be found at key
locations along the ridges. Following this view, we see that
the watershed lines are the set of slope lines emanating from
saddle points and connecting to a local maximum or minimum.
Within this framework, saddle points have the crucial function
of defining the sheets and filaments in the density field through
their connection to the maxima via the integral lines.

Note that because the image in Figure 2 is a slice through
a three-dimensional field, the identification between the struc-
tural elements and the critical points in the image is not entirely
unequivocal. Nonetheless, the principal observation is that the
resulting weblike segmentation of space, and the correspond-
ing boundary manifolds, contains the full information on its
topological structure marked by sheets, filaments, and nodes.

2.4. Morse Theory

The vast majority of applications of the WST concern the
interior of the segmented regions. However, it is straightforward
to extend its focus to other morphological components of the
Cosmic Web, toward the delineation of the network of overdense
ridges and walls which form the boundary manifolds of the
cosmic density landscape.

This can be directly appreciated by noting the close relation
between the definition of the WST and the more formal concept
of the Morse complex. Morse theory is the mathematical
framework for the analysis of the topological structure of
manifolds, by relating it to smooth, C2-differentiable, functions
defined on those spaces. Central to Morse theory are the location
and nature of the critical points—minima, maxima, and saddle
points—and their mutual connection via the gradient-based
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Figure 1. Top left: a slice of 100 h−1 Mpc of side showing the density field computed from an N-body simulation. Top right: the same slice as the left panel but here
showing the density field as a shaded landscape where high-density regions correspond to ridges while underdense regions correspond to valleys. The light source
used to shade the surface is located at the northeast. Bottom left: the two-dimensional WST computed from the two-dimensional density field using a discrete-intensity
bucket algorithm (black contours). Each individual valley is randomly colored for visualization purposes. Bottom right: the same landscape as the top right panel but
here we also show the WST superimposed as thick black lines. The watershed contour has been slightly smoothed for visualization purposes.

integral lines. These determine the morphological features of
the functional surface.

Even though there are some differences between the two (see,
e.g., Gyulassy 2008), the close similarity between the definition
of the WST and the concepts of Morse theory indicates that
the computation of the WST may be used as an efficient means
of computing the various structural elements in a landscape
dissected along the lines of Morse theory (Morse 1934; Milnor
1965).

In a cosmological context, the skeleton formalism (Novikov
et al. 2006; Sousbie et al. 2008a, 2008b, 2009) is also based
on Morse theoretical concepts, via the gradient and/or Hessian

of the density field. The approach followed in our SpineWeb
procedure involves the specific application of the WST for the
analysis and description of the topology of the megaparsec
universe, following our introduction of the concept in the
context of cosmic density field analysis (Platen et al. 2007).
Implicitly, this results in a pseudo-Morse segmentation (see,
e.g., Gyulassy 2008; Edelsbrunner & Harer 2010), with the
advantage of opening the path toward a fully hierarchical
formalism. This intimate relationship was also recognized by
Sousbie et al. (2009), who used a probabilistic extension of
the watershed technique in the latest version of the skeleton
formalism.
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Figure 2. Left: a slice of the density field shown as a shaded landscape with the watershed lines superimposed as black lines. Right: the zoomed area in the blue square
of the left panel showing the slope lines (white lines) superimposed on the density field (gray background). The contour of the WST is delineated by the thick black
lines.

(A color version of this figure is available in the online journal.)

2.5. The Discrete Watershed Transform

The implementation of the WST in a large variety of scientific
applications has to address a few important practical issues. A
typical characteristic of most scientific images is their discrete
nature.

The discreteness concerns two aspects: the spatial discrete-
ness, i.e., the discrete number of intervals at which the image has
been sampled (pixels/voxels) and the discrete intensity levels at
which the image has been sampled.

Image discreteness creates a few complications for an accu-
rate calculation of the WST. It renders it difficult to identify
the existence and exact location of saddle points on the basis
of a discretized local neighborhood. For the same reason, it is
difficult to accurately extract slope lines.

Several methods for the extraction of critical points have been
developed in an attempt to alleviate the limitations imposed
by the discreteness of images. Among these, the discrete WST
algorithm (Beucher 1982) represents a simple and elegant
formalism for identifying the watershed separatrices and can
be shown to converge to the continuous case (Najman &
Schmitt 1994). The procedure emulates the flooding of valleys or
catchment basins in a (discrete) image representing a landscape.
The points where two or more lakes converge are marked, and
the algorithm continues until all the pixels in the image have
been flooded. At the end of the process the image will be
segmented into individual regions sharing a local minima, with
the points that were marked as the dividing boundaries between
two or more valleys defining the WST.

A major asset of the intensity discretization is that it helps
to remove faint features, and therefore also removes artifacts
without the need of pre- or post-processing. Perhaps the greatest
advantage is that discrete images allow the use of highly
efficient algorithms but in general their use is limited to image
segmentation since they give incorrect topologies.

In the case of images with continuous (floating point) values
one retains the option of computing the WST directly from
the continuous intensity image, in addition to the option of
discretizising the intensity. On the basis of the continuous
image, the WST would delineate the topology more accurately
than would be feasible on the basis of the discrete-level
representation. However, it would involve a substantial increase
in computational cost and of complexity of the code.

3. SPINE OF THE COSMIC WEB

The analogy between the WST defining the boundary be-
tween underdense basins and the topology of the cosmic matter
distribution is in itself one of the major justifications of the
SpineWeb method presented in this study. Basic is the connec-
tion between the elements that form the Spine of the Cosmic
Web: walls, filaments, clusters, and voids.

1. The Cosmic Web is an interconnected system of dense
compact clusters, elongated filaments, and tenuous sheet-
like walls. Visible through the galaxies, gas, and dark matter
populating these structural features, the Cosmic Web the-
ory (Bond et al. 1996) teaches us that its topological outline
was already present in the primordial perturbation field out
of which all structure arose.

2. All of the elements of the Cosmic Web are interconnected.
This is a crucial observation, which can be most readily ap-
preciated by studying high-resolution N-body simulations
(e.g., Springel et al. 2005). Otherwise seemingly isolated
objects usually turn out to be connected to less massive
structures which become visible when assessing the mass
distribution at a higher mass resolution. A tantalizing idea is
that the galaxies found at the center of voids lie at the inter-
section of tenuous intra-void dark-matter filaments (Zitrin
& Brosch 2009; Park & Lee 2009; Stanonik et al. 2010).



No. 1, 2010 SPINE OF THE COSMIC WEB 369

3. Filaments are suspended between clusters or, dependent
on scale, massive halo clumps. Their prominence and
density may vary substantially, dependent on the mass,
distance, and alignment of the generating dark matter halos.
However, the sheer presence of two matter clumps is already
sufficient for the corresponding tidal force field to guarantee
the topological presence of a filamentary bridge. Tenuous
membranes permeate the space between adjacent filaments
and are part of the large wall which defines the boundary
between two underdense voids. The wall boundary is
outlined by various filaments, connecting each other at the
cluster nodes.

Following these observations, the Cosmic Spine is defined as
the topological network of nodes, filaments, and sheets along
which the cosmic matter distribution on large megaparsec scales
has assembled (see Figure 1).

4. THE SpineWeb PROCEDURE

The key aspect of the SpineWeb procedure is that it exploits
the intrinsic topological information contained in the WST to
delineate the Cosmic Spine. For the computation of the Cosmic
Spine by means of the WST it is necessary to address a few
issues of practical importance.

4.1. Density Field

In our current implementations of the SpineWeb procedure,
we apply the DTFE method to reconstruct the density field from
the spatial particle distribution.

The DTFE procedure produces a self-adaptive volume-filling
density field on the basis of the Delaunay tessellation of the point
distribution (Schaap & van de Weygaert 2000; Schaap 2007).
DTFE density (and velocity) fields have been found to optimally
trace a hierarchical matter distribution at any resolution level
represented by the point sample, while at the same time resolving
the local anisotropies in the matter distribution. This high
level of sensitivity to the topology of the matter distribution
makes DTFE ideally suited for the SpineWeb procedure (for
an extensive description of the DTFE procedure, see van de
Weygaert & Schaap 2009).

Given a spatial distribution of points, DTFE is based on the
assumption that the density at the position of each point is
proportional to the inverse of the total volume of the adjacent
Delaunay tetrahedra, i.e., to the volume of its contiguous
Voronoi cell. Subsequently, the density field values at any
location throughout the sample volume are determined by means
of linear interpolation within the Delaunay tetrahedra of the
corresponding Delaunay tessellation. Because a singular density
determination at the central location of a voxel tends to introduce
aliasing artifacts at high densities, we follow a slightly elaborate
procedure. The density at each voxel of the “image” grid is
determined on the basis of the DTFE density field sampled on a
subgrid with a three times higher resolution and the density at
each gridpoint set equal to the mean of the DTFE values at the
27 subgrid locations within the corresponding voxel.

In the applications described in this study, we compute the
density field values at the voxels of a regular cubic grid. We
use a fast and efficient implementation of the DTFE algorithm
based on the publicly available CGAL library.3

3 http://www.cgal.org

Figure 3. Local neighborhood around a voxel (green) inside a wall (left) and
filament (right). The blue voxels indicate walls and the red voxels filaments. The
light gray cubes here represent voxels inside voids. The voxel inside a wall has
two adjacent voids inside its neighborhood (A and B), while the voxel inside a
filament has in this case three adjacent voids (A, B, and C).

(A color version of this figure is available in the online journal.)

4.2. Watershed Implementation

The discrete WST code we use in the SpineWeb procedure is
an adaptation of the immersion and the topographical distance
algorithms for floating point intensity values (see Roerdink &
Meijster 2000, for a review). The code assumes a density map
which is sampled on a regular grid. Our C code4 computes the
WST from a double-precision 5123 grid in just a couple of
minutes on a regular linux workstation.

In a first step, the code starts by finding and labeling the local
minima in the density map, by identifying the voxels with the
lowest density value among all their 26 neighbors. These local
minima are the seeds of the void valleys to be identified by the
WST.

In a second step, we follow the topographical distance
algorithm in order to obtain a fast segmentation of the space
into locally connected underdense regions. For each voxel we
identify the voxel among its 26 neighbors which has the lowest
density. The maximum gradient paths are traced by iteratively
connecting the voxels to their lowest density neighbor until the
path reaches a local minimum. Subsequently, we assign the label
of the corresponding minimum to the path.

In the third step, we extract the WST itself, i.e., the boundaries
between the void regions. The pixels in the WST are identified
by means of a local immersion algorithm. First, we identify
all the voxels that lie at the boundaries between two or more
regions. Subsequently, this subset of voxels is sorted in density
and the standard immersion algorithm is applied. By following
this two-step procedure, we avoid what would be the most
expensive component of the algorithm. Instead of having to sort
the complete density field, the sorting evaluations are restricted
to the points in the watershed boundaries, a minor fraction of
the complete volume.

In a final step, each of the pixels in the watershed boundary
is assigned a morphological label, following its identification
as void, wall, or filament element, according to the criterion
expressed in Equation (3) and as illustrated in Figure 3.

While the WST provides us with a highly efficient means of
segmenting space into topologically well-defined elements, in
general the watershed algorithm tends to overdo the segmenta-
tion, creating too many regions and identifying small noise in
the image rather than real features (see Edelsbrunner & Harer
2010). We circumvent this circumstance by preprocessing the

4 The code will be publicly released in an upcoming article. In the meantime,
it can be provided upon request.

http://www.cgal.org
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density or the distance field via a Gaussian smoothing of σ = 2
voxels.

4.3. From Watershed to SpineWeb

From the analogy between the Cosmic Web and the WST
one can define, on the basis of the discrete WST of a cosmic
density field, a set of unique criteria to identify voids, walls, and
filaments.

The criteria are based on the properties of the local neighbor-
hood of all the points that comprise the discrete WST. Instead
of computing at any given point the local eigenvalues of the
Hessian of the density field, one may simply resort to the en-
tirely equivalent evaluation of the identity of the surrounding
26 neighbor pixels (for the three-dimensional situation). By
counting the number Nvoids of adjacent watershed basins (voids)
among these, it is straightforward to discriminate between vox-
els which belong to a void, a wall, or a filament by means of the
following set of rules:

Nvoids

⎧⎪⎨
⎪⎩

= 1, void
= 2, wall
� 3, spine

(filament + clusters).

(3)

Note that in the present implementation we do not discriminate
between filament or cluster node, and instead consider them to
be part of the same spinal structure. In a future implementation,
we will include a density maximum criterion which would allow
us to find the cluster nodes amongst the spine voxels. In addition,
we can easily identify regions in clusters by using one of the
common halo finders available like friends of friends and isolate
them from the identified filaments.

Our Spineweb technique exploits a purely local criterion for
identifying the morphological nature of boundary pixels in the
density field: it utilizes the full geometric structure of the WST
to limit the evaluation to the direct neighbors of each point.
This differs from the implementation followed by Sousbie et al.
(2009) who included a probability propagation scheme in the
watershed flooding procedure from where the different elements
of their skeleton were determined by finding their intersections
between the corresponding peak and void patches.

The above criterion is a purely and solely a topological one.
By definition, walls are the regions between two adjacent voids.
Filaments are to be found at the intersection of three watershed
basins, at the intersection of three walls (see Figure 3). The
success of these criteria can be appreciated from the three-
dimensional surface maps in Figure 8 and the comparison
between density and spine maps in Figure 10.

4.4. Image Grid Representation

While a regular grid facilitates the computation of the WST
and the subsequent topological identification of the various
boundary pixels (see Figure 3), its simplicity may also involve
a few possibly artifacts.

The first artifact relates to the discrete nature of the voxels
in the density field. As a result, the filaments and walls have
an artificial thickness—even if they would be infinitesimally
thin—which makes the look pixelated or jagged. A particularly
good illustration of this is the Spine obtained for the Voronoi
clustering model in Figure 5 (panel (c)) where we explicitly
render individual voxels as cubes. In the asymptotic limit of
infinitesimally thin voxels, the discrete watershed will converge
to the continuous case.

The second artifact concerns the anisotropic nature of the lo-
cal neighborhood of each voxel: each voxel has 6 neighboring
voxels at a distance d = 1 (in voxel units), 16 neighbors at
d = √

2, and 8 neighbors at d = √
3. It also involves an an-

gular neighbor distribution deviating substantially from angular
isotropy. A possible alternative would be to limit the neigh-
borhood evaluation to the six most direct neighbors. However,
the poor sampling might lead to a considerable risk of missing
important topological information. For two-dimensional images
the solution would be more straightforward. The use of a hexag-
onal grid would involve equal distance for all neighbor pairs
and a perfectly uniform angular distribution. Unfortunately, an
equivalent perfect grid for the three-dimensional situation does
not exist. However, the use of Centroid Voronoi Tessellations
(Du et al. 1999) would certainly help to alleviate the main
artifacts.

4.5. Galaxy Spine Assignment

Physically, filaments and walls are not infinitesimally thin
structures. To identify the particles or galaxies attached to them,
we therefore need to define a (natural) thickness which encloses
these objects.

In the applications described below, we account for this
by applying the dilation morphological operator to the voxels
labeled as filament and wall. The process increases the thickness
of filaments and walls by one voxel and this procedure can
be performed iteratively to further increase the thickness. The
dilation operator was applied first to voxels labeled as wall and
subsequently to pixels labeled as filaments following the number
of degrees of freedom in the local variation of the density field,
i.e., first walls and subsequently filaments (Aragón-Calvo et al.
2007a). In our particular case, a single iteration with a 3 × 3 × 3
kernel provides a good result without excessively fattening the
structures.

5. SpineWeb TEST: VORONOI CLUSTERING MODELS

To test and quantify in an objective way the identification
of walls and filaments with the SpineWeb procedure we apply
it to a few realizations of Voronoi Clustering models of the
large-scale matter distribution (van de Weygaert & Icke 1989;
van de Weygaert 2002, 2010).

The Voronoi clustering models are heuristic models for
cellular spatial patterns which use the geometric (and convex)
structure of the Voronoi tessellation (Voronoi 1908; Okabe
et al. 2000) to emulate the cosmic matter distribution. They
offer flexible templates for cellular patterns and are easy to
tune toward a specific spatial cellular morphology. This makes
them very suited for studying clustering properties of nontrivial
geometric spatial patterns. Because the location, geometry,
and identity of the various spatial components in Voronoi
models are known precisely, they are ideal as testbeds for the
SpineWeb procedure. Unless otherwise specified, the seeds of
the tessellation usually involve a set of Poisson distributed pints.

The Voronoi models use the corresponding tessellation for
defining the structural frame around which matter will gradually
assemble during the formation and growth of cosmic structure.
Points are distributed within this framework by assigning them
to one of the four distinct structural components of a Voronoi
tessellation.

1. Void: regions located in the interior of Voronoi cells.
2. Wall: regions within and around the Voronoi cell faces.
3. Filament: regions within and around the Voronoi cell edges.
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4. Clusters: regions within and around the Voronoi cell
vertices.

What is usually described as a flattened “supercluster” con-
sists of an assembly of various connecting walls in the Voronoi
foam, while elongated “superclusters” of “filaments” usually
include a few coupled edges. Vertices are the most outstanding
structural elements, corresponding to the very dense compact
nodes within the Cosmic Web where one finds the rich clusters
of galaxies.

Among a variety of possible Voronoi clustering realizations,
two distinct yet complementary classes of models are the most
frequently used ones, the structurally rigid Voronoi element
models and the evolving kinematic Voronoi models (see, e.g.,
van de Weygaert 2010 for an extensive description). Here we
use one Voronoi element model, a composite of all four distinct
components, and one realization of a Voronoi kinematic model.

In the case of the Voronoi element model, the walls, edges,
and vertices are infinitely thin, yielding a pure geometric discrete
realization of the underlying Voronoi tessellation. The Voronoi
kinematic model represents a more realistic situation in which
the various structures are assigned a finite width. We first analyze
the topologically cleaner configuration of the Voronoi Element
model to assess the performance of SpineWeb under optimal
conditions. Subsequently, we investigate whether in how far it
can sustain this performance under less optimal circumstances.

5.1. Voronoi Element Model

Based on a uniform distribution of M cell seeds in a (periodic)
box of size L, we start with a uniform distribution of N
particles throughout a (periodic) box of size L. The particles
are distributed within the tessellation by projecting them—with
respect to the seed of the cell in which they are originally
located—onto the walls, edges, or vertices surrounding their
Voronoi cell. As a result each of the walls, filaments, and vertices
has a different density, although the density remains uniform
within each of the individual elements.

The Voronoi Element models we used for our test consisted of
a set of particles distributed in a box of size L with 106 particles
from which 70% resides in the walls, 25% in the filaments, and
5% in the clusters. We chose a realization completely devoid of
particles in the interior of voids. This distribution of particles
was chosen in order to obtain a more uniform sampling over the
three morphologies compared to a more realistic distribution.

5.1.1. Voronoi Distance Field

For the purpose of this test, instead of basing the SpineWeb
procedure on the reconstructed (and noisy) density field we use
the knowledge of the underlying tessellation to define a clean
distance field.

The main idea behind the SpineWeb method, the identifica-
tion of morphological structures on the basis of their topology,
does not depend on practical details of the density field determi-
nation from a data set of observed galaxy locations or computer
simulations. In this respect, it is important to realize that the
validity of the SpineWeb procedure can be tested and assessed
on the basis of the topological structure of any field that is topo-
logically equivalent to the density field of the Cosmic Web. This
indeed is true for the distance field, and any generic field marked
by a monotonic increasing value from a field minimum toward
its WST.

In the particular implementation described in this section,
the distance field is defined as the Euclidean distance from

each particle to its closest Voronoi seed. Regions close to the
cell centers have low values while regions in the planes and
edges of the cell have large values, with the value gradually
increasing along the direction from the Voronoi cell centers
toward the projected location on the walls. Within the walls, the
highest density is reached at the surrounding edges, ultimately
peaking at the vertices. In the resulting distance field, small
cells correspond to low field values, while the larger cells
yield higher field values, particularly near their boundaries.
Following this definition, the distance field emulates the range of
densities encountered in the Cosmic Web. The finite volumes
of Voronoi cells in periodic tessellations assure a convergence
of the distance field on the boundaries of data volume.

Various definitions of distance fields might be used, largely
dictated by the specific questions at hand. An example of one
such possibility would be to normalize the distance field on
the basis of the distance of the point to its second closest
Voronoi nucleus, or the distance of its projected location on the
corresponding Voronoi wall. The resulting distance field would
reach a value of unity at the walls of the Voronoi cells. However,
we opted to use the distance field with no normalization since
it gives a better representation of the large dynamical range of
densities encountered in the Cosmic Web.

5.1.2. Distance Field Realization

For the Voronoi Element test model, we determined the
distance field on a cubic 5123 grid. For each of the pixels
in the grid we identify the closest nucleus, among the set of
M generating nuclei. The pixel is assigned the value of its
Euclidean distance.

The resulting field is shown in Figure 4. It depicts the distance
field itself, in a planar section through the three-dimensional
box, by means of a gray-scale map. The corresponding particles
located in the filaments, walls, and nodes, within a narrow strip
around the sectional plane, are superimposed on the image.

5.2. Voronoi Kinematic Model

A nearly equivalent Voronoi clustering model realization is
a Voronoi kinematic model. Here initially randomly distributed
particles move away from their expansion nucleus—i.e., the
closest nucleus in whose Voronoi cell they are located—by a
universal expansion rate (see, e.g., van de Weygaert 2002, 2010).

When particles reach the wall shared between their expan-
sion center and the second closest nucleus, their motion is con-
strained to their path within the wall. This continues until they
reach one of the edges delimiting the wall, upon which they
proceed along the edge toward their ultimate location, that of
one of the vertices at the ends of the edge.

The model simulation box has a length of 141 h−1 Mpc, in
which we find 180 Voronoi cells. In total, the box contains
N = 2,097,152 particles. Originally distributed randomly
throughout the box, we move them until 16.5% of the galax-
ies reside in the walls, 28.7% in the filaments, and 51.3% at the
cluster nodes. Unlike the Voronoi element model described in
the previous section, the voids remain populated with a diluted
random distribution of 3.5% of all void galaxies.

The different morphological structures in this Voronoi kine-
matic model are also assumed to have a finite physical width.
Particles within the walls, edges, and vertices are assumed
to have a Gaussian distribution perpendicular to these struc-
tures. The width for each of these morphologies is set to σ =
1.0 h−1 Mpc. Even though the topological properties of the
pure Voronoi element model and this Voronoi kinematic model
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Figure 4. Left: slice of the distance field computed from the Voronoi seeds (background). The particles located inside filaments, walls, and nodes are also shown.
Right: Voronoi model with density field reconstruction. A slice across the intensity of the density field is shown in orange scale in the background. The black lines
correspond to the WST and the particles are indicated by small diamonds. Blue particles are misclassifications (in all the categories) and black particles are correct
classified particles.

(A color version of this figure is available in the online journal.)

are practically equivalent, the finite width and more organic de-
velopment of the Voronoi kinematic models represent a spatial
density field which more closely emulates that encountered in
galaxy redshift surveys and in N-body simulations of structure
formation.

5.2.1. Voronoi Model Density Field

The SpineWeb performance test for the Voronoi kinematic
model is based on the density field of the particle distribution.
We use the DTFE method to reconstruct the density field from
the point distribution on a 2563 cubic grid within the simulation
box.

Figure 4, right-hand panel, shows a two-dimensional section
through the reconstructed density field, which is represented by a
color map. The low-density patches and high-density structures
clearly outline the interior region of voids, while the high-
density regions correspond to the walls and filaments in the
overall spatial pattern.

5.3. SpineWeb Identification

Following the determination of the distance field for the
Voronoi element model, and the density field for the Voronoi
kinematic model, the SpineWeb procedure proceeds to identify
the Spine of the particle distribution. Following the identifica-
tion, we assess the fraction of false and real spine detections in
both Voronoi models.

5.3.1. Detection Rates: Definition

Quantitatively, we assess the detection rate of the SpineWeb
procedure by determining the ratio of real and false detections
of filament and wall particles.

The detection rate Rreal is defined as the fraction of original
wall or filament particles that are also identified as such by the

Table 1
Recovered Particles Per Morphology

Structure Rreal Rfalse

Walls DIS 0.93 0.15
Spine DIS 0.91 0.03

Walls DEN 0.76 0.32
Spine DEN 0.87 0.13

Notes. Ratio of real and false recovery rates per morphology.
The top half corresponds to the results from the distance
field (DIS), while the bottom half concerns the results for the
DTFE reconstructed density field (DEN). For definition of
Rreal and Rfalse see Equations (4) and (5).

SpineWeb technique,

Rreal = Nreal

Noriginal
. (4)

In this equation, Nreal is the number of wall or filament particles
that have also been identified as such, and Noriginal is the
total number of particles that in the Voronoi model physically
belong to a wall or filament. Along the same lines, we measure
the filament and wall contamination rate Rfalse following the
definition,

Rfalse = Nfalse

Noriginal
. (5)

Nfalse is the number of particles recognized as wall or filament
particle, but in reality having a different morphological identity.

The results for the detection and contamination rates of walls
and filaments in both the Voronoi Element model as well as the
Voronoi kinematic model are listed in Table 1.
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(a) (b) (c)

(d) (e) (f)

Figure 5. SpineWeb method applied to a Voronoi distribution. (a) Original particles lying at the edges of the Voronoi cells (filaments). (b) Original particles lying at
the faces of the Voronoi cells (walls). (c) Pixels inside filaments (red) and walls (blue) identified with the SpineWeb method. (d) Recovered particles lying at the edges
of the Voronoi cells (filaments). (e) Recovered particles lying at the faces of the Voronoi cells (walls). (f) Particles erroneously identified as particles in filaments. The
box shown here contains 1/64 of the original box volume.

(A color version of this figure is available in the online journal.)

5.3.2. Spine of the Voronoi Element Model

In order to remove small-scale spurious variations, the dis-
tance field is smoothed with a Gaussian filter of σ = 2 voxels.
Of the smoothed distance field we compute the WST. Following
this, the Spine is determined.

The SpineWeb results for the Voronoi element models are
illustrated in Figure 5. Visual inspection of the figure provides
a good impression of the virtues and performance of the
procedure. Comparison between panels (a) and (d) shows
that the genuine filament particles in the Voronoi model (a)
are identified with a convincing accuracy by the SpineWeb
procedure (d). The same is true for the successful identification
of the Voronoi wall particles (panel (b)) and the SpineWeb
identified wall particles (panel (e)). Interestingly, the particles
that SpineWeb erroneously identify as filament particles while in
fact they are wall particles, shown in panel (f), clearly delineate
the original filamentary web. It is most likely a result of the
discrete resolution of the distance field grid.

The SpineWeb reconstructed spine, shown in panel (c) of
Figure 5, allows a clear and transparent assessment of the
topological structure of the Voronoi web. It shows the identified
wall voxels by means of blue blocks, while the filamentary
voxels are indicated as red blocks. The walls form a continuous
network of connecting surfaces, with filaments delineating the
intersections between the walls.

From Table 1, we can see that 93% of particles in walls and
91% of particles in filaments are also identified as such, while
the contamination rate of walls and filaments are 15% and 3%.
The false identities can usually be ascribed to the jagged nature
of the voxels (see panel (c), Figure 4).

The simple and idealized example of the Voronoi Element
model shows the intrinsic potential and power of the SpineWeb
procedure. Solely on the basis of the topology of the matter
distribution, and independent of a density threshold or any
other arbitrary parameter, it manages to determine its correct
morphological segmentation.

5.3.3. Spine of the Voronoi Kinematic Model

The situation for the Voronoi kinematic model, marked by a
more noisy particle distribution and a less idealized density field
reconstruction, is less straightforward yet more representative
for realistic circumstances.

Figure 4 (right-hand panel) shows, superimposed on the
density field color map, the Voronoi particle distribution as well
as the WST. The latter is shown by means of the black lines.
Particles identified as wall or filament particles are indicated
by small diamonds. The WST is able to identify most of the
voids and their boundaries. The image shows that the SpineWeb
procedure managed to closely follow the location of the edges
and faces in the original Voronoi tessellation.
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Figure 6. Volume rendering of a thick slice of the density field in a ΛCDM simulation in a box of 200 h−1 Mpc. Left: the full DTFE reconstructed density field. Right:
the density field inside an isosurface at δ = 1.

(A color version of this figure is available in the online journal.)

Some minor deviations are detected at small scales, the result
of Poisson noise in combination with the discrete nature of the
sampled density field. By construction, our filaments and walls
are only one voxel thick (in this Voronoi model realization this
is equal to ∼1 h−1 Mpc). As a result, we may miss the particles
inside a given structure because of small-scale variations in
the density field translating into variations in the WST. This
effect can be appreciated from the misclassified (blue) particles
in Figure 4, mostly clustered around the boundaries between
filaments.

To determine the detection and contamination rate of the
SpineWeb calculation, we compare the identity of the Voronoi
wall and filament particles, which are a priori known from the
model generation, with that of the classification on the basis
of the reconstructed watershed segmentation. To this end, we
assign the particles within a radius of 2σ ∼ 2 h−1 Mpc from a
wall or a filament in the spine (watershed) segmentation to that
particular structure: a particle is identified with a wall when it
lies within a 2σ distance from two different watershed cells.
Although the detection rate results are less forthcoming than
for the pure Voronoi element models, they remain convincing
(see lower half of Table 1). We find a detection rate of 76%
for wall particles, as opposed to a contamination rate of ∼32%.
Filaments are better recognizable, which may be understood
from the 87% detection rate of filament particles, as opposed to
a mere 13% misclassification rate.

6. SINGLE-SCALE ΛCDM SPINE

To test the SpineWeb method in a more realistic and chal-
lenging situation we have applied it to a cosmological N-body
simulation. It concerns a ΛCDM universe simulation inside a
box of 200 h−1 Mpc, restricted to the dark matter particles. Ini-
tial conditions were generated on a 5123 grid with Ωm = 0.3,
ΩΛ = 0.7, σ8 = 0.9, and h = 0.73. For the primordial pertur-
bations, we use the transfer function of Bardeen et al. (1986)

with a shape parameter Γ = 0.21 following the definition of
Sugiyama (1995). After having set up the initial conditions, we
follow the subsequent gravitational evolution to the present time
using the public N-body code Gadget2 (Springel et al. 2005).

From the same initial conditions, we also generated additional
lower-resolution versions of 2563, 1283, and 643 particles were
generated, following the “averaging” prescription described
in Klypin et al. (2001). For the single-scale analysis in this
paper, which focuses on the largest filaments and walls in the
particle distribution, it is sufficient to analyze the low-resolution
643 data set. The lower resolution corresponds to a cutoff scale of
∼3 h−1 Mpc in the initial conditions, sufficient for the analysis
focusing on the large-scale structure. The higher resolution data
sets are used for visualization purposes.

6.1. Density Field Morphology

From the final particle distribution, we compute the density
field on a cubic grid of 512 voxels per dimension using the DTFE
method (see Section 4.1). Figure 6 (left-hand panel) depicts a
volume rendering of the density field in a thick slice through
the simulation box. It shows that DTFE manages to follow the
intricacies of the weblike structures in great detail, over a range
of scales: it reproduces the correct geometry of the various
features.

An interesting example of structural complexities in the
displayed region is the cluster at the left-hand side of the slice.
A full three-dimensional visualization of the system shows that
the filaments entering the cluster define several semi-planar
structures, all sharing the cluster as their common node. Lower
isodensity contours reveal even more of the tenuous walls, even
though at such low-density levels we need to take into account
that the image gets easily confused by spurious interloping
features.

A frequently used approach for delineating structural features
such as filaments and walls is to assign a specific density
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Figure 7. Three-dimensional WST of the density field. The cube shows the pixels that compose the WST, from which the Spine is extracted. Several slices cut across
the simulation box show the watershed (white lines) delineating the density field (blue-green background). The three-dimensional nature of the watershed network is
evident.

(A color version of this figure is available in the online journal.)

range to each morphology. Filaments or walls are singled
out by selecting the regions that have a density within the
corresponding density range. In the right-hand panel of Figure 6
we show the density field inside an isodensity surface at δ = 1,
for clarity superimposed on top of a white background. Because
a density value δ = 1 is roughly comparable to typical values
encountered in filaments and walls (see, e.g., Aragón-Calvo
2007), these contours roughly define the boundaries of the
filaments and the clusters embedded, along with the tenuous
walls suspended between the filaments.

Although the isodensity surfaces provide good insight into
the overall distribution of matter, one immediate observation
is that the attempted pure density selection of filaments is not
very successful. As was pointed out by Aragón-Calvo (2007)
filaments and walls are characterized by a rather broad range of
densities (also see, e.g., Hahn et al. 2007a). The broad cluster,
filament, wall, and field density ranges are also mutually over-
lapping over a sizeable density range (also see Aragón-Calvo
et al. 2010).

An immediate repercussion of the overlapping density ranges
is that it is almost impossible to decide purely on the basis
of a density criterion whether a certain location belongs to a
cluster node, filament, or wall. This may be directly appreciated
from the truncated density map in Figure 6. Although the
image shows a substantial degree of filamentary structure,
comparison with the full density field shows that it discards the
pattern of lower density filaments. Also, it does not manage to
disentangle the highly concentrated agglomeration of filaments
near the massive cluster at the central left-hand side of the box.
Moreover, throughout the whole volume it is rather difficult to
see which locations would belong to a filament and which ones to
a wall.

6.2. Cosmic Spine and Cellular Morphology

Following the computation of the density field, we compute
its WST. The resulting segmentation of the density field into its
watershed basins is illustrated in Figure 7.
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The watershed basins are to be identified with the void
regions in the cosmic matter distribution. To get a better idea of
its spatial structure and the connections between the various
structural components, we slice through the watershed field
at regular intervals along the x-axis. This yields a sample of
yz-slices through the simulation box. Figure 7 shows a sequence
of five consecutive yz-slices, with the watershed segmentation
shown as white lines superimposed on top of the density field
(blue-green level) map. It is straightforward to appreciate the
correspondence between the watershed segmentation lines and
the underlying density field. While the segmented cube in
Figure 7 emphasizes the characteristic cellular nature of the
Cosmic Web, the yz slices reveal the close relationship between
voids, walls, and filaments.

The two-dimensional yz slices show the strong correlation
between the density field and the WST. The watershed lines
trace the high-density ridges and regions in the density field,
occasionally bridging their lower-density connecting parts. On
a more global scale, we also note that the higher density
regions contain a higher number of distinct and smaller cells
than the more moderate or underdense areas. This translates
into a more complex local network of filaments and walls.
The opposite effect occurs in underdense regions. These are
mainly characterized by large symmetrical voids, surrounded
by relatively simple wall–filament environments.

Cosmic voids are immediately recognized as large empty
cells in the WST. The walls in the cosmic matter distribution are
visible as the boundaries between two adjacent watershed cells,
while the filaments are found at the intersection of these walls.
The considerable variety of sizes and shapes of voids is most
readily visible in the pattern of watershed lines in the yz-slices.
Even though we know that on stereological grounds, lower-
dimensional sections tend to exaggerate the size distribution
of the full three-dimensional distribution, the comparison with
the void basins in the three-dimensional box does confirm
the impression of the diversity of the void population. It also
underlines the significance of topological SpineWeb analysis:
the void distribution is a direct reflection of the complexity of
the dynamical processes which are forming and shaping the
voids (Sheth & van de Weygaert 2004; Platen et al. 2008).

6.3. Cosmic Spine: Filaments and Walls

The final step in the SpineWeb method is to identify and
label the voxels that correspond to the spine (filaments and
clusters) and walls, following the SpineWeb criteria specified in
Equation (3).

An insightful impression of the intricacy of the full three-
dimensional network of filaments and walls is presented in
Figure 8. The top two frames show the wall-like (blue) and
filamentary (red) regions separately. Clearly outstanding is the
percolating nature of the filamentary network and the complex
of connecting sheets.

The appearance of a uniform width, at places considerably
in excess of the local width of the density field contours, is
a result of our choice to show, for visualization purposes, a
uniform smoothed outline. The plotted isosurface of both walls
and filaments is obtained by filtering the mask defined by all wall
voxels with a Gaussian kernel of σ = 2 voxels. The Gaussian
smoothing radius corresponds roughly to the average width of
≈2 h−1 Mpc of filaments and walls, as we found in a previous
study (Aragón-Calvo 2007). One may get an impression of the
corresponding variation in density and width along the spinal
structures by inspecting the two bottom frames of Figure 10,

where we have superimposed density contour levels onto the
embedding spinal contours (left: walls; right: filaments).

The top left panels in Figure 8 show a network of complex
sheets. Instead of a regular “planar” geometry, on small scales
the walls have a curved appearance marked by an irregular sur-
face. To a considerable extent this reflects their inhomogeneous
internal mass distribution, itself a result of their hierarchical
buildup. The irregular convoluted shapes are found on all scales,
although the walls do have a slightly more regular semi-planar
geometry on larger scales.

Also the filamentary structures reflect their inhomogeneous
internal mass distribution, even though the applied smooth-
ing has tended to diminish the contrast between, e.g., massive
clumps and tenuous moderate or lower density parts of the fila-
ments. As a result, over most of its outline the filamentary edges
look semi-linear. Nonetheless, occasionally we can recognize
rather twisted configurations, and at numerous locations we can
recognize the bulging presence of massive clusters. Taking the
nodal junctions as the endpoints demarcating an individual fila-
ment, a first analysis shows that short filaments tend to be more
straight than longer ones. This is entirely in line with the trend
predicted by the Cosmic Web theory, and is in agreement with
a corresponding analysis of N-body simulations (Bond et al.
1996, 2010; Colberg et al. 2005).

6.4. Morphological Connections

The close mutual relationship between the walls and filaments
is immediately clear when inspecting the superposition of the
wall-like and filamentary web in the bottom (right) frame of
Figure 8. With the filaments defining an interconnected web, the
walls fill the spaces in between the filaments, together forming
a “watertight” complex of membranes surrounding a system of
voidlike cavities. The zoom-in onto one specific region centered
around a particularly intricate branching of filaments emanating
from a node, in Figure 9, highlights the complex connections
that may occur in the Cosmic Web. At least four filaments appear
to originate from a core region at the confluence of five walls.
In the branches, we can clearly recognize the bulging imprint of
massive clusters. The zoom-in also nicely shows the small-scale
heterogeneity of the walls’ surfaces.

6.5. Cosmic Spine versus Density Selection

To compare the morphological SpineWeb segmentation with
the corresponding density field, in Figure 10 we have depicted
the matter distribution in a central slice through the simulation
box. The two top panels are images of the density field (see
discussion Section 6.1), while the bottom panels present the
density field within morphologically segregated regions. The
two frames at the bottom show the density field inside semi-
transparent surfaces enclosing the wall features (bottom left)
and the filamentary features (bottom right).

6.5.1. Stereological Considerations

When assessing the bottom frame of Figure 10, we have to
take into account that isolated features observed in these slices
are the result of the finite thickness of the slice. Particularly
noteworthy for the filaments in the right-hand frame, they are
artifacts of the finite width of the depicted slice. Because the
orientation of filaments in the cosmic spine with respect to
the slice is random, their intersection with the slice will differ.
Dependent on the intersection angle, it may vary from their
full length—in case they are nearly entirely embedded within
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Figure 8. Surfaces enclosing the voxels which are identified as belonging to walls (blue, top left) and filaments (red, top right) within a cubic region of 50 h−1 Mpc.
The bottom frame shows how in the same region both morphological components are connected and intertwined. The latter forms a nice illustration of the intimate
relationship between filaments and walls. For visualization purposes the surfaces are smoothed with a Gaussian kernel of σ = 2 voxels.

(A color version of this figure is available in the online journal.)

Figure 9. Zoom-in onto the cosmic spine in a subregion of the 50 h−1 Mpc, highlighting the intricate connections between wall surfaces (blue), filamentary edges,
and cluster nodes (red).

(A color version of this figure is available in the online journal.)



378 ARAGÓN-CALVO ET AL. Vol. 723

Figure 10. Filaments and walls identified with the SpineWeb algorithm. Top left: volume rendering of the density field inside a sub-box of the simulation. Top right:
density field contained inside an isosurface at δ = 1. Only the density inside the isocontour is plotted. Bottom left: density field and semi-transparent isosurfaces
delineating walls. Bottom right: density field and semi-transparent isosurfaces delineating filaments. Both wall and filament mask have been smoothed for visualization
purposes with a Gaussian filter of σ = 2 pixels.

(A color version of this figure is available in the online journal.)

the slice—to a mere point in case they run perpendicular to
the slice. The resulting impression is one of a semi-irregular
distribution of shorter and longer “stubs,” which indeed we find
back in the bottom right-hand frame.

The two-dimensional geometry of walls tends results in linear
intersection with the depicted slice. This produces the fully
percolating network of (intersection) edges seen in the bottom
left-hand frame. Note that occasionally the orientation of a wall
is so favorable that its intersection is not a one-dimensional
edge but instead consists of a slab comprising a major fraction
of the wall. In the most extreme circumstance, the wall is

entirely embedded within the slice so that it remains visible in its
entirety.

6.5.2. Morphological Structure of Density Features

While the first superficial impression might be that the
isocontour map of the density field (see Figure 10, top right
panel) is richer in detail and structure than the filamentary and
sheetlike morphologies in the bottom frames, a few important
observations need to be made.

An important contrast between the isodensity contour maps
and the filamentary and sheetlike networks defined by the
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Figure 11. Normalized density distribution for all voxels in the simulation box
(thick gray line), void voxels (solid line), wall voxels (dotted line), and filament
voxels (dashed line).

SpineWeb procedure is that between the rather discontinu-
ous nature of the (thresholded) density maps and the fully
percolating spinal structure. This is most clearly visible when
zooming in regions with large density contrasts, of which fila-
ments close to the infall region are a good example. The massive
cluster complex visible at the left of the box forms a nice illus-
tration. The filamentary extensions connecting to the cluster
are identified by the SpineWeb procedure (left-hand panel of
Figure 10), along with the sheetlike membranes of which they
form the boundary (right-hand panel of Figure 10). It would be
very challenging for traditional density-based filament detection
techniques to trace filaments near cluster–filament interfaces.
The density in the infall regions of clusters tends to increase
dramatically, rendering a density-based criterion to determine
the local morphology rather cumbersome (Aragón-Calvo 2007).

7. ANALYSIS WALL AND FILAMENT SAMPLE

In this section, we present a few quantitative measures of
the voids, walls, and filaments extracted by the SpineWeb
technique. The results concern the single-scale analysis of our
643 particle ΛCDM simulation described in the previous section
(see Section 6).

7.1. Density Distribution

The density field of the 643 simulation was computed on a
regular 5123 grid, no smoothing was applied to the filament
and wall masks. Figure 11 shows the density field distribution
computed for the complete simulation box, voids, filaments, and
walls. The distribution of densities can be roughly described
as lognormal with the main difference between morphological
environments being the position of the peak of the distribution.
Numerous studies have shown that a gravitationally evolving
matter distribution, starting from Gaussian initial conditions,
tends to attain a lognormal density distribution toward more
advanced quasi-linear stages (Coles & Jones 1991; Neyrinck
et al. 2009; Platen 2009). Our results indicate that this remains
true for each of the individual morphologies.

Table 2
Voids, Filaments, and Walls: Densities and Volumes

Structure (1 + δ)256 Median Fm,256

Mean

Voids 0.81 0.56 0.825
Walls 1.68 0.94 0.158
Spine 3.46 1.58 0.015

(1 + δ)512 Median Fm,512

Mean

Voids 0.86 0.58 0.889
Walls 1.85 0.93 0.103
Spine 4.47 1.57 0.006

Notes. Basic statistics of the density field in voids, walls, and
filaments, for density grids of 2563 (top) and 5123 (bottom) voxels.
Quoted are the mean and median of the density field, (1 + δ), in the
individual morphologies, and the volume fraction FV,m of each of
them.

Voids have the lowest densities followed by walls and
filaments, respectively. It is important to note that the network of
filaments found by our method contains also the clusters which
act as the nodes of the wall–filament network. This affects the
right tail of the distribution and the computed moments. The
median is a much better estimator than the mean in all cases
given the effect of the clustering of matter into halos in our
sampling schema.

Table 2 shows basic statistics of the density field characterized
by the Spine. We present the statistic computed at two different
grid resolutions (2563 and 5123 voxels) as a simple convergence
test. The numbers in Table 2 show that the mean and median
densities of the different morphologies are largely similar for
the two different resolutions. This is quite different for the
volume occupancy, in particular for the walls, filaments, and
clusters. This is a direct reflection of the resolution-dependent
finite thickness assigned to filaments and walls, i.e., the voxel
size. The volume fraction of voids is less sensitive to the grid
resolution. We may understand this in terms of the SpineWeb
invariants: void occupancy scales by volume, wall occupancy
by surface area, and filaments by length. The latter is therefore
most sensitive to density field resolution, voids least.

An important observation is also the considerable overlap
between the pdfs of the different morphologies. While distri-
butions peak at clearly different places, there is a large overlap
between all density distributions. This degeneracy in the den-
sity distributions between morphologies explains why a given
isodensity contours does not manage to isolate one specific mor-
phology, but will invariably include regions belonging to other
morphologies too.

For our purpose, most significant are the differences between
density distributions inside filaments and walls. Perhaps most
remarkable is the sizeable overlap between densities in the void
fields and those in filaments. The density distribution inside
voids is almost identical to the overall density distribution.
This is not surprising given the fact that even though voids
are extremely underdense they occupy most of the space in the
Cosmic Web. The difference between both distributions occurs
at the high density tails where the clusters lie.

7.2. Minkowski–Bouligand Dimension

We performed a preliminary scaling analysis of the identified
filamentary and wall-like networks in the analyzed ΛCDM N-
body simulation. To this end, we have determined for each of
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Figure 12. Box-counting dimension of the filamentary spine (black dashed line)
and walls (black solid line) of the Cosmic Web. For comparison, we show the
curves for ideal one and two-dimensional objects (gray dashed and gray solid
lines, respectively).

these networks the Minkowski–Bouligand dimension DMB—or
box counting dimension—formally defined as

DMB = lim
ε→0

log N (ε)

log(1/ε)
. (6)

In this expression, we count the number N (ε) of boxes of
(infinitesimal) size ε required to fill or cover the set of points
belonging to the filamentary or wall-like web. In practice, we
divide the simulation box into subboxes of size s and count the
number N (s) of subboxes that contain at least one voxel labeled
as filament or wall. By repeating this evaluation for several box
sizes, and determining the scaling index N (s) ∝ s−D , we obtain

an estimate of the Minkowski–Bouligand dimension. One may
visualize this by plotting the count N (s) versus the size s if
the boxes, preferentially in a logarithmic diagram. If indeed
characterized by a single fractal dimension, the resulting curve
would be characterized by one slope. In practice, the structural
patterns tend to be more complex, manifesting itself in scaling
curves that cannot be characterized by a single uniform slope.

Figure 12 shows the Minkowski–Bouligand dimension com-
puted for the wall and filament networks. We also show two
(gray) lines with slopes −1 and −2 as a reference indicating the
cases of a pure one- and two-dimensional objects. The slope of
the curves for filaments and walls differs considerably at small
scales. Filaments behave like one-dimensional lines up to scales
of 3–4 h−1 Mpc after which point the absolute magnitude of the
slope of the curve increases from −1 to −3 at scales of approx-
imately 10 h−1 Mpc. In the case of the wall network, we see
a similar behavior with walls having a clear two-dimensional
nature at scales smaller than 3–4 h−1 Mpc. The transition point
in the curve of Figure 12 provides a good indication of the scale
at which filaments and walls start joining each other forming
an interconnected network. At this point their dimension is no
longer 1 (filaments) or 2 (walls) but a higher value reflecting the
complexity of the network of filaments and walls that form the
Cosmic Web.

7.3. LSS Complexity and Local Density

Another measure of the local complexity of the network of
filaments and walls is presented in Figure 13 where we show the
mean number of cells labeled as filament or wall inside boxes
of 8 h−1 Mpc size as a function of the mean density inside the
boxes.

Low values indicate very simple local configurations while
large values reflect complex environments. At first glance, this
may seem straightforward as increasing excursion sets of the
density field have a similar behavior. However, the filaments
and walls we identify are one voxel thick so their voxel count
correlates with their length and surface area, respectively. For a
given fixed volume larger counts indicate more intricate filament
and wall systems.

Figure 13. Number of cells labeled as wall (left panel) or filament (right panel) inside boxes of 8 h−1 Mpc of side as a function of the mean overdensity inside the
8 h−1 Mpc box. The number of cells is normalized with the mean count of all the 8 h−1 Mpc boxes.
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We find a trend between the density and the complexity
of the environment. Highly dense boxes tend to contain more
structures than underdense boxes. The regions in the vicinity of
massive clusters are a good example of complex neighborhoods
defined in a locally overdense regions, while the large voids
define relatively simple wall and filament structures. The spread
about the clearly visible mean trend is quite substantial. One of
the main reasons is the restriction in the scale of the analysis,
which leads to a confusion of intrinsic scales and counting of
fainter structures together with more significant ones. A proper
multiscale analysis, the subject of our following paper, will take
this into account.

8. CONCLUSION AND FUTURE WORK

The Spine of the Cosmic Web is the Cosmic Web’s frame-
work, consisting of the network of filaments and walls and their
connections at the clusters nodes. In this study, we present a
topological technique based on the discrete WST of the cosmic
density field for the identification and characterization of voids,
walls, and filaments. Our method is closely related to a vari-
ety of concepts from computational topology and has a strong
mathematical foundation in Morse theory of singularities.

The SpineWeb method is ideally suited for morphological
and dynamical studies of the large-scale structure. Among
others, it will allow a better insight into the formation and
dynamics of the anisotropic filamentary and wall-like structures
in the large-scale universe. Another immediate application is
in addressing the question whether and which influences the
large-scale environment has on the halos and galaxies that are
forming within their realm.

As a first test of its viability, we applied our method on a set of
heuristic Voronoi clustering models. The SpineWeb procedure
succeeds in reconstructing the original properties of the cellular
galaxy distribution. In the implementation presented in this
work, we effectively restrict ourselves to a single spatial scale
determined by the voxel scale of the regular grid on which the
density field is sampled. In a forthcoming paper, we will discuss
the effect of the multiscale nature of the matter distribution. The
scale-space formulation of the SpineWeb method will enable us
to identify fainter features in the density field and establish their
connections with other objects into a truly hierarchical weblike
pattern. In other words, it provides an effective way toward
characterizing the hierarchy of structures in the Cosmic Web.

A crucial aspect of the WST and of our method is the
definition of local neighborhood. In the case of regular grids
the immediate neighborhood of 26 pixels is arguably the best
option. However, for unmeshed data such as galaxy surveys
and N-body simulations, other neighborhood definitions offer a
better choice. Among these, the Voronoi contiguous cell defined
by the Delaunay tessellation of the point distribution represents
a promising option. In the third paper of this series, we will
present the result of a Delaunay implementation of the Spine
method.

We thank Bernard Jones for inspiring discussions and in-
sightful comments. This research was funded by the Gordon
and Betty Moore foundation.
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