57 research outputs found

    Fracture properties of La(Fe,Mn,Si)13 magnetocaloric materials

    Get PDF
    La(Fe,Mn,Si)13 alloys are a promising material family for magnetic refrigeration. Challenges associated with their structural integrity during device assembly and operation requires deep understanding of the mechanical properties. Here we developed a workflow to quantitatively study the fracture properties of La(Fe,Mn,Si)13 plates used in magnetic cooling devices. We employed microstructural characterisation, optical examination of defects, and four-point bending tests of samples with known defect sizes to evaluate their mechanical performance. We established the residual strength curve which directly links observed defects to mechanical strength. The estimated fracture toughness KC of hydrogenated La(Fe,Mn,Si)13 is approximately 4 MPa·m1/2 for the geometry employed. The established relationship between strength and crack length enables the prediction of mechanical performance through examination of defects via optical microscopy, therefore can be used industrially for directing plate selection to guarantee the mechanical stability of refrigeration devices

    Females know better : Sex-biased habitat selection by the European wildcat

    Get PDF
    Altres ajuts: FCT/UID/BIA/50027/2013Altres ajuts: POCI/01-0145-FEDER-006821The interactions between animals and their environment vary across species, regions, but also with gender. Sex-specific relations between individuals and the ecosystem may entail different behavioral choices and be expressed through different patterns of habitat use. Regardless, only rarely sex-specific traits are addressed in ecological modeling approaches. The European wildcat (Felis silvestris silvestris) is a species of conservation concern in Europe, with a highly fragmented and declining distribution across most of its range. We assessed sex-specific habitat selection patterns for the European wildcat, at the landscape and home range levels, across its Iberian biogeographic distribution using a multipopulation approach. We developed resource selection functions in a use-availability framework using radio-telemetry data from five wildcat populations. At the landscape level, we observed that, while both genders preferentially established home ranges in areas close to broadleaf forests and far from humanized areas, females selected mid-range elevation areas with some topographic complexity, whereas males used lowland areas. At the home range level, both females and males selected areas dominated by scrublands or broadleaf forests, but habitat features were less important at this level. The strength of association to habitat features was higher for females at both spatial levels, suggesting a tendency to select habitats with higher quality that can grant them enhanced access to shelter and feeding resources. Based on our results, we hypothesize that sex-biased behavioral patterns may contribute to the resilience of wildcats' genetic integrity through influencing the directionality of hybridization with domestic cats. Our study provides information about European wildcats' habitat use in an Iberian context, relevant for the implementation of conservation plans, and highlights the ecological relevance of considering sex-related differences in environmental preferences

    Grain refinement of magnesium alloys: a review of recent research, theoretical developments and their application

    Get PDF
    This paper builds on the ‘‘Grain Refinement of Mg Alloys’’ published in 2005 and reviews the grain refinement research onMg alloys that has been undertaken since then with an emphasis on the theoretical and analytical methods that have been developed. Consideration of recent research results and current theoretical knowledge has highlighted two important factors that affect an alloy’s as-cast grain size. The first factor applies to commercial Mg-Al alloys where it is concluded that impurity and minor elements such as Fe and Mn have a substantially negative impact on grain size because, in combination with Al, intermetallic phases can be formed that tend to poison the more potent native or deliberately added nucleant particles present in the melt. This factor appears to explain the contradictory experimental outcomes reported in the literature and suggests that the search for a more potent and reliable grain refining technology may need to take a different approach. The second factor applies to all alloys and is related to the role of constitutional supercooling which, on the one hand, promotes grain nucleation and, on the other hand, forms a nucleation-free zone preventing further nucleation within this zone, consequently limiting the grain refinement achievable, particularly in low solute-containing alloys. Strategies to reduce the negative impact of these two factors are discussed. Further, the Interdependence model has been shown to apply to a broad range of casting methods from slow cooling gravity die casting to fast cooling high pressure die casting and dynamic methods such as ultrasonic treatment

    HEC dental health campaign 1985

    No full text

    Dental futurescope

    No full text

    Not the argument

    No full text
    • …
    corecore