50 research outputs found

    Object-guided Spatial Attention in Touch: Holding the Same Object with Both Hands Delays Attentional Selection

    Get PDF
    Abstract Previous research has shown that attention to a specific location on a uniform visual object spreads throughout the entire object. Here we demonstrate that, similar to the visual system, spatial attention in touch can be object guided. We measured event-related brain potentials to tactile stimuli arising from objects held by observers' hands, when the hands were placed either near each other or far apart, holding two separate objects, or when they were far apart but holding a common object. Observers covertly oriented their attention to the left, to the right, or to both hands, following bilaterally presented tactile cues indicating likely tactile target location(s). Attentional modulations for tactile stimuli at attended compared to unattended locations were present in the time range of early somatosensory components only when the hands were far apart, but not when they were near. This was found to reflect enhanced somatosensory processing at attended locations rather than suppressed processing at unattended locations. Crucially, holding a common object with both hands delayed attentional selection, similar to when the hands were near. This shows that the proprioceptive distance effect on tactile attentional selection arises when distant event locations can be treated as separate and unconnected sources of tactile stimulation, but not when they form part of the same object. These findings suggest that, similar to visual attention, both space- and object-based attentional mechanisms can operate when we select between tactile events on our body surface.</jats:p

    Think Beyond the Core : Impact of the Hydrophilic Corona on Drug Solubilization Using Polymer Micelles

    Get PDF
    Polymeric micelles are typically characterized as core-shell structures. The hydrophobic core is considered as a depot for hydrophobic molecules, and the corona-forming block acts as a stabilizing and solubilizing interface between the core and aqueous milieu. Tremendous efforts have been made to tune the hydrophobic block to increase the drug loading and stability of micelles, whereas the role of hydrophilic blocks is rarely investigated in this context, with poly(ethylene glycol) (PEG) being the gold standard of hydrophilic polymers. To better understand the role of the hydrophilic corona, a small library of structurally similar A-B-A-type amphiphiles based on poly(2-oxazoline)s and poly(2-oxazine)s is investigated by varying the hydrophilic block A utilizing poly(2-methyl-2-oxazoline) (pMeOx; A) or poly(2-ethyl-2-oxazoline) (pEtOx; A*). In terms of hydrophilicity, both polymers closely resemble PEG. The more hydrophobic block B bears either a poly(2-oxazoline) and poly(2-oxazine) backbone with C3 (propyl) and C4 (butyl) side chains. Surprisingly, major differences in loading capacities from A-B-A > A*-B-A > A*-B-A* is observed for the formulation with two poorly water-soluble compounds, curcumin and paclitaxel, highlighting the importance of the hydrophilic corona of polymer micelles used for drug formulation. The formulations are also characterized by various nuclear magnetic resonance spectroscopy methods, dynamic light scattering, cryogenic transmission electron microscopy, and (micro) differential scanning calorimetry. Our findings suggest that the interaction between the hydrophilic block and the guest molecule should be considered an important, but previously largely ignored, factor for the rational design of polymeric micelles.Peer reviewe

    Shifts of attention in the early blind: an ERP study of attentional control processes in the absence of visual spatial information

    Get PDF
    To investigate the role of visual spatial information in the control of spatial attention, event-related brain potentials (ERPs) were recorded during a tactile attention task for a group of totally blind participants who were either congenitally blind or had lost vision during infancy, and for an age-matched, sighted control group who performed the task in the dark. Participants had to shift attention to the left or right hand (as indicated by an auditory cue presented at the start of each trial) in order to detect infrequent tactile targets delivered to this hand. Effects of tactile attention on the processing of tactile events, as reflected by attentional modulations of somatosensory ERPs to tactile stimuli, were very similar for early blind and sighted participants, suggesting that the capacity to selectively process tactile information from one hand versus the other does not differ systematically between the blind and the sighted. ERPs measured during the cue–target interval revealed an anterior directing attention negativity (ADAN) that was present for the early blind group as well as for the sighted control group. In contrast, the subsequent posterior late direction attention negativity (LDAP) was absent in both groups. These results suggest that these two components reflect functionally distinct attentional control mechanisms which differ in their dependence on the availability of visually coded representations of external space

    Seasonality of Planktonic Freshwater Ciliates: Are Analyses Based on V9 Regions of the 18S rRNA Gene Correlated With Morphospecies Counts?

    Get PDF
    Ciliates represent central nodes in freshwater planktonic food webs, and many species show pronounced seasonality, with short-lived maxima of a few dominant taxa while many being rare or ephemeral. These observations are primarily based on morphospecies counting methods, which, however, have limitations concerning the amount and volume of samples that can be processed. For high sampling frequencies at large scales, high throughput sequencing (HTS) of freshwater ciliates seems to be a promising tool. However, several studies reported large discrepancy between species abundance determinations by molecular compared to morphological means. Therefore, we compared ciliate DNA metabarcodes (V9 regions of the 18S rRNA gene) with morphospecies counts for a 3-year study (Lake Zurich, Switzerland; biweekly sampling, n = 74). In addition, we isolated, cultivated and sequenced the 18S rRNA gene of twelve selected ciliate species that served as seeds for HTS analyses. This workflow allowed for a detailed comparison of V9 data with microscopic analyses by quantitative protargol staining (QPS). The dynamics of V9 read abundances over the seasonal cycle corroborated well with morphospecies population patterns. Annual successions of rare and ephemeral species were more adequately characterized by V9 reads than by QPS. However, numbers of species specific sequence reads only partly reflected rank orders seen by counts. In contrast, biomass-based assemblage compositions showed higher similarity to V9 read numbers, probably indicating a relation between cell sizes and numbers / sizes of macronuclei (or 18S rRNA operons). Full-length 18S rRNA sequences of ciliates assigned to certain morphospecies are urgently needed for barcoding approaches as planktonic taxa are still poorly represented in public databases and the interpretation of HTS data depends on profound reference sequences. Through linking operational taxonomic units (OTUs) with known morphospecies, we can use the deep knowledge about the autecology of these species
    corecore