8,111 research outputs found
Deep LOFAR 150 MHz imaging of the Bo\"otes field: Unveiling the faint low-frequency sky
We have conducted a deep survey (with a central rms of )
with the LOw Frequency ARray (LOFAR) at 120-168 MHz of the Bo\"otes field, with
an angular resolution of , and obtained a sample of
10091 radio sources ( limit) over an area of .
The astrometry and flux scale accuracy of our source catalog is investigated.
The resolution bias, incompleteness and other systematic effects that could
affect our source counts are discussed and accounted for. The derived 150 MHz
source counts present a flattening below sub-mJy flux densities, that is in
agreement with previous results from high- and low- frequency surveys. This
flattening has been argued to be due to an increasing contribution of
star-forming galaxies and faint active galactic nuclei. Additionally, we use
our observations to evaluate the contribution of cosmic variance to the scatter
in source counts measurements. The latter is achieved by dividing our Bo\"otes
mosaic into 10 non-overlapping circular sectors, each one with an approximate
area of The counts in each sector are computed in the
same way as done for the entire mosaic. By comparing the induced scatter with
that of counts obtained from depth observations scaled to 150MHz, we find that
the scatter due to cosmic variance is larger than the Poissonian
errors of the source counts, and it may explain the dispersion from previously
reported depth source counts at flux densities . This work
demonstrates the feasibility of achieving deep radio imaging at low-frequencies
with LOFAR.Comment: A\&A in press. 15 pages, 16 figure
Energy transfer in nonlinear network models of proteins
We investigate how nonlinearity and topological disorder affect the energy
relaxation of local kicks in coarse-grained network models of proteins. We find
that nonlinearity promotes long-range, coherent transfer of substantial energy
to specific, functional sites, while depressing transfer to generic locations.
Remarkably, transfer can be mediated by the self-localization of discrete
breathers at distant locations from the kick, acting as efficient
energy-accumulating centers.Comment: 4 pages, 3 figure
Measuring capital in active addiction and recovery: the development of the strengths and barriers recovery scale (SABRS).
BACKGROUND: The international Life In Recovery (LiR) surveys have provided an important message to the public and policy makers about the reality of change from addiction to recovery, consistently demonstrating both that there are marked gains across a range of life domains and that the longer the person is in recovery the better their recovery strengths and achievements. However, to date, no attempt has been made to quantify the Life In Recovery scales and to assess what levels of change in removing barriers and building strengths is achieved at which point in the recovery journey. METHODS: The current study undertakes a preliminary analysis of strengths and barriers from the Life in Recovery measure, using data from a European survey on drug users in recovery (n = 480), and suggests that the instrument can be edited into a Strengths And Barriers Recovery Scale (SABRS). The new scale provides a single score for both current recovery strengths and barriers to recovery. RESULTS: The resulting data analysis shows that there are stepwise incremental changes in recovery strengths at different recovery stages, but these occur with only very limited reductions in barriers to recovery, with even those in stable recovery typically having at least two barriers to their quality of life and wellbeing. Greater strengths in active addiction are associated with greater strengths and resources in recovery. CONCLUSION: As well as demonstrating population changes in each of the domains assessed, the current study has shown the potential of the Life In Recovery Scale as a measure of recovery capital that can be used to support recovery interventions and pathways
Circles in the Sky: Finding Topology with the Microwave Background Radiation
If the universe is finite and smaller than the distance to the surface of
last scatter, then the signature of the topology of the universe is writ large
on the microwave background sky. We show that the microwave background will be
identified at the intersections of the surface of last scattering as seen by
different ``copies'' of the observer. Since the surface of last scattering is a
two-sphere, these intersections will be circles, regardless of the background
geometry or topology. We therefore propose a statistic that is sensitive to all
small, locally homogeneous topologies. Here, small means that the distance to
the surface of last scatter is smaller than the ``topology scale'' of the
universe.Comment: 14 pages, 10 figures, IOP format. This paper is a direct descendant
of gr-qc/9602039. To appear in a special proceedings issue of Class. Quant.
Grav. covering the Cleveland Topology & Cosmology Worksho
Extended Emission Line Gas in Radio Galaxies - PKS0349-27
PKS0349-27 is a classical FRII radio galaxy with an AGN host which has a
spectacular, spiral-like structure in its extended emission line gas (EELG). We
have measured the velocity field in this gas and find that it splits into 2
cloud groups separated by radial velocities which at some points approach 400
km/s Measurements of the diagnostic emission line ratios [OIII]5007/H-beta,
[SII]6716+6731/H-alpha, and [NII]6583/H-alpha in these clouds show no evidence
for the type of HII region emission associated with starburst activity in
either velocity system. The measured emission line ratios are similar to those
found in the nuclei of narrow-line radio galaxies, but the extended
ionization/excitation cannot be produced by continuum emission from the active
nucleus alone. We present arguments which suggest that the velocity
disturbances seen in the EELG are most likely the result of a galaxy-galaxy
collision or merger but cannot completely rule out the possibility that the gas
has been disrupted by the passage of a radio jet.Comment: 12 pages, 3 fig pages, to appear in the Astrophys.
Recommended from our members
Large-eddy simulation of two-dimensional dunes in a steady, unidirectional flow
We performed large-eddy simulations of the flow over a typical two-dimensional dune geometry at laboratory scale (the Reynolds number based on the average channel height andmean velocity is 18,900) using the Lagrangian dynamic eddy-viscosity subgrid-scale model. The results are validated by comparison with simulations and experiments in the literature. The flowseparates at the dune crest, generating a shear layer that plays a crucial role in the transport of momentum and energy, and the generation of coherent structures. The turbulent kinetic energy budgets show the importance of the turbulent transport and mean-flow advection in the bulk flow above the shear layer. In the recirculation zone and in the attached boundary layers production and dissipation are the most important terms. Large, coherent structures of various types can be observed. Spanwise vortices are generated in the separated shear layer due to the Kelvin-Helmholtz instability; as they are advected, they undergo lateral instabilities and develop into horseshoe-like structures, are tilted downward, and finally reach the surface. The ejection that occurs between the legs of the vortex creates the upwelling and downdrafting events on the free surface known as "boils." Near-wall turbulence, after the reattachment point, is affected by large streamwise Taylor-Görtler vortices generated on the concave part of the stoss side, which affect the distribution of the near-wall streaks
Dust attenuation in 2<z<3 star-forming galaxies from deep ALMA observations of the Hubble Ultra Deep Field
17 pages, 7 figures, accepted version to be published in MNRASWe present the results of a new study of the relationship between infrared excess (IRX ≡ L IR/L UV), ultraviolet (UV) spectral slope (β) and stellar mass at redshifts 2 < z < 3, based on a deep Atacama Large Millimeter Array (ALMA) 1.3-mm continuum mosaic of the Hubble Ultra Deep Field. Excluding the most heavily obscured sources, we use a stacking analysis to show that z ≃ 2.5 star-forming galaxies in the mass range 9.25 ≤ log(M*/M ⊙) ≤ 10.75 are fully consistent with the IRX-β relation expected for a relatively grey attenuation curve, similar to the commonly adopted Calzetti law. Based on a large, mass-complete sample of 2 ≤ z ≤ 3 star-forming galaxies drawn frommultiple surveys, we proceed to derive a new empirical relationship between β and stellar mass, making it possible to predict UV attenuation (A1600) and IRX as a function of stellar mass, for any assumed attenuation law. Once again, we find that z ≃ 2.5 star-forming galaxies follow A1600-M* and IRX-M* relations consistent with a relatively grey attenuation law, and find no compelling evidence that star-forming galaxies at this epoch follow a reddening law as steep as the Small Magellanic Cloud (SMC) extinction curve. In fact, we use a simple simulation to demonstrate that previous determinations of the IRX-β relation may have been biased towards low values of IRX at red values of β, mimicking the signature expected for an SMC-like dust law. We show that this provides a plausible mechanism for reconciling apparently contradictory results in the literature and that, based on typical measurement uncertainties, stellar mass provides a cleaner prediction of UV attenuation than β. Although the situation at lower stellar masses remains uncertain, we conclude that for 2 < z < 3 star-forming galaxies with log(M*/M ⊙) ≥ 9.75, both the IRX-β and IRX-M* relations are well described by a Calzetti-like attenuation law.Peer reviewe
Remnant radio-loud AGN in the Herschel-ATLAS field
Only a small fraction of observed active galactic nuclei (AGN) display large-scale radio emission associated with jets, yet these radio-loud AGN have become increasingly important in models of galaxy evolution. In determining the dynamics and energetics of the radio sources over cosmic time, a key question concerns what happens when their jets switch off. The resulting ‘remnant' radio-loud AGN have been surprisingly evasive in past radio surveys, and therefore statistical information on the population of radio-loud AGN in their dying phase is limited. In this paper, with the recent developments of Low-Frequency Array (LOFAR) and the Very Large Array, we are able to provide a systematically selected sample of remnant radio-loud AGN in the Herschel-ATLAS field. Using a simple core-detection method, we constrain the upper limit on the fraction of remnants in our radio-loud AGN sample to 9 per cent, implying that the extended lobe emission fades rapidly once the core/jets turn off. We also find that our remnant sample has a wide range of spectral indices (−1.5 ⩽ α1400150 ⩽ −0.5), confirming that the lobes of some remnants may possess flat spectra at low frequencies just as active sources do. We suggest that, even with the unprecedented sensitivity of LOFAR, our sample may still only contain the youngest of the remnant population
- …