78 research outputs found

    Correlated production and consumption of chloromethane in the Arabidopsis thaliana phyllosphere

    Get PDF
    Chloromethane (CH3Cl) is a toxic gas mainly produced naturally, in particular by plants, and its emissions contribute to ozone destruction in the stratosphere. Conversely, CH3Cl can be degraded and used as the sole carbon and energy source by specialised methylotrophic bacteria, isolated from a variety of environments including the phyllosphere, i.e. the aerial parts of vegetation. The potential role of phyllospheric CH3Cl-degrading bacteria as a filter for plant emissions of CH3Cl was investigated using variants of Arabidopsis thaliana with low, wild-type and high expression of HOL1 methyltransferase previously shown to be responsible for most of CH3Cl emissions by A. thaliana. Presence and expression of the bacterial chloromethane dehalogenase cmuA gene in the A. thaliana phyllosphere correlated with HOL1 genotype, as shown by qPCR and RT-qPCR. Production of CH3Cl by A. thaliana paralleled HOL1 expression, as assessed by a fluorescence-based bioreporter. The relation between plant production of CH3Cl and relative abundance of CH3Cl-degrading bacteria in the phyllosphere suggests that CH3Cl-degrading bacteria co-determine the extent of plant emissions of CH3Cl to the atmosphere

    Toward Integrative Bacterial Monitoring of Metolachlor Toxicity in Groundwater

    Get PDF
    Common herbicides such as metolachlor (MET), and their transformation products, are frequently detected in groundwater worldwide. Little is known about the response of groundwater bacterial communities to herbicide exposure, and its potential use for ecotoxicological assessment. The response of bacterial communities exposed to different levels of MET from the Ariège alluvial aquifer (Southwest of France) was investigated in situ and in laboratory experiments. Variations in both chemistry and bacterial communities were observed in groundwater, but T-RFLP analysis did not allow to uncover a pesticide-specific effect on endogenous bacterial communities. To circumvent issues of hydrogeochemical and seasonal variations in situ, groundwater samples from two monitoring wells of the Ariège aquifer with contrasting records of pesticide contamination were exposed to different levels of MET in laboratory experiments. The standard Microtox® acute toxicity assay did not indicate toxic effects of MET, even at 5 mg L-1 (i.e., 1000-fold higher than in contaminated groundwater). Analysis of MET transformation products and compound-specific isotope analysis (CSIA) in laboratory experiments demonstrated MET biodegradation but did not correlate with MET exposure. High-throughput sequencing analysis (Illumina MiSeq) of bacterial communities based on amplicons of the 16S rRNA gene revealed that bacterial community differed mainly by groundwater origin rather than by its response to MET exposure. OTUs correlating with MET addition ranged between 0.4 to 3.6% of the total. Predictive analysis of bacterial functions impacted by pesticides using PICRUSt suggested only minor changes in bacterial functions with increasing MET exposure. Taken together, results highlight MET biodegradation in groundwater, and the potential use of bacterial communities as sensitive indicators of herbicide contamination in aquifers. Although detected effects of MET on groundwater bacterial communities were modest, this study illustrates the potential of integrating DNA- and isotopic analysis-based approaches to improve ecotoxicological assessment of pesticide-contaminated aquifers. GRAPHICAL ABSTRACTAn integrative approach was develop to investigate in situ and in laboratory experiments the response of bacterial communities exposed to different levels of MET from the Ariége alluvial aquifer (Southwest of France)

    Variable Copy Number, Intra-Genomic Heterogeneities and Lateral Transfers of the 16S rRNA Gene in Pseudomonas

    Get PDF
    Even though the 16S rRNA gene is the most commonly used taxonomic marker in microbial ecology, its poor resolution is still not fully understood at the intra-genus level. In this work, the number of rRNA gene operons, intra-genomic heterogeneities and lateral transfers were investigated at a fine-scale resolution, throughout the Pseudomonas genus. In addition to nineteen sequenced Pseudomonas strains, we determined the 16S rRNA copy number in four other Pseudomonas strains by Southern hybridization and Pulsed-Field Gel Electrophoresis, and studied the intra-genomic heterogeneities by Denaturing Gradient Gel Electrophoresis and sequencing. Although the variable copy number (from four to seven) seems to be correlated with the evolutionary distance, some close strains in the P. fluorescens lineage showed a different number of 16S rRNA genes, whereas all the strains in the P. aeruginosa lineage displayed the same number of genes (four copies). Further study of the intra-genomic heterogeneities revealed that most of the Pseudomonas strains (15 out of 19 strains) had at least two different 16S rRNA alleles. A great difference (5 or 19 nucleotides, essentially grouped near the V1 hypervariable region) was observed only in two sequenced strains. In one of our strains studied (MFY30 strain), we found a difference of 12 nucleotides (grouped in the V3 hypervariable region) between copies of the 16S rRNA gene. Finally, occurrence of partial lateral transfers of the 16S rRNA gene was further investigated in 1803 full-length sequences of Pseudomonas available in the databases. Remarkably, we found that the two most variable regions (the V1 and V3 hypervariable regions) had probably been laterally transferred from another evolutionary distant Pseudomonas strain for at least 48.3 and 41.6% of the 16S rRNA sequences, respectively. In conclusion, we strongly recommend removing these regions of the 16S rRNA gene during the intra-genus diversity studies

    Valorisation of wheat bran to produce natural pigments using selected microorganisms

    No full text
    International audiencePigments are compounds with highly diverse structures and wide uses, which production is increasing worldwide. An eco-friendly method of bioproduction is to use the ability of some microorganisms to ferment on renewable carbon sources. Wheat bran (WB) is a cheap and abundant lignocellulosic co-product of low recalcitrance to biological conversion. Microbial candidates with theoretical ability to degrade WB were first preselected using specific databases. The microorganisms were Ashbya gossypii (producing riboflavin), Chitinophaga pinensis (producing flexirubin), Chromobacterium vaccinii (violacein) and Gordonia alkanivorans (carotenoids). Growth was shown for each on minimal salt medium supplemented with WB at 5 g.L−1. Activities of the main enzymes consuming WB were measured, showing leucine amino-peptidase (up to 8.45 IU. mL−1) and β-glucosidase activities (none to 6.44 IU. mL−1). This was coupled to a FTIR (Fourier Transform Infra-Red) study of the WB residues that showed main degradation of the WB protein fraction for C. pinensis, C. vaccinii and G. alkanivorans. Production of the pigments on WB was assessed for all the strains except Ashbya, with values of production reaching up to 1.47 mg.L−1. The polyphasic approach used in this study led to a proof of concept of pigment production from WB as a cheap carbon source

    Draft Genome Sequence of Pseudomonas graminis PDD-13b-3, a Model Strain Isolated from Cloud Water

    No full text
    International audienceThe whole genome of Pseudomonas graminis PDD-13b-3, a strain of bacteria isolated from cloud water, was sequenced. This showed that this microorganism is equipped with genes that could potentially be involved in its survival in the atmosphere and clouds: those for oxidative stress and carbon starvation responses, DNA repair, and iron uptake

    Streptomyces silvae sp. nov., isolated from forest soil

    No full text
    International audienceA bacterial strain, named For3 T , was isolated from forest soil sampled in Champenoux, France. Based on its 16S rRNA gene sequence, the strain was affiliated to the family Streptomycetaceae and, more specifically, to the genus Streptomyces . The strain had 99.93% 16S rRNA gene sequence similarity to its closest relative strains Streptomyces pratensis ATCC 33331 T , Streptomyces anulatus ATCC 27416 T , Streptomyces setonii NRRL ISP-5322 T and Kitasatospora papulosa NRRL B-16504 T . The phylogenomic tree using the genome blast distance phylogeny method showed that the closest relative strain was Streptomyces atroolivaceus NRRL ISP-5137 T and that For3 T represents a new branch among the Streptomyces . Genome relatedness indexes revealed that the average nucleotide identity and digital DNA–DNA hybridization values between For3 T and its closest phylogenomic relative ( S. atroolivaceus NRRL ISP-5137 T ) were 88.39 and 39.2 %, respectively. The G+C content of the genome was 71.4 mol% and its size was 7.96 Mb with 7492 protein-coding genes. Strain For3 T harboured complete metabolic pathways absent in the closest relative strains such as cellulose biosynthesis, glycogen degradation I, glucosylglycerate biosynthesis I. Anteiso-C 15:0 , iso-C 15:0 , anteiso-C 17:0 and MK-9(H4)/MK-9(H6) were the predominant cellular fatty acids and respiratory quinones, respectively. Phenotypic and genomic data supported the assignment of strain For3 T to a novel species Streptomyces silvae sp. nov., within the genus Streptomyces , for which the type strain is For3 T (=CIP 111908 T =LMG 32186 T )

    Streptomyces durocortorensis sp. nov., isolated from oak rhizosphere

    No full text
    International audienceStrain RHZ10 T was isolated from an oak rhizosphere sampled in Reims, France, and characterized to assess its taxonomy. Based on 16S rRNA gene sequence similarity, strain RHZ10 T was affiliated to the genus Streptomyces and the closest species were Streptomyces anulatus NRRL B-2000 T and Streptomyces pratensis ch24 T . Average nucleotide identity and digital DNA–DNA hybridization values were 77.3–92.4 % and 23.0–50.9 %, respectively, when compared to the type strains of fully sequenced related species having a 16S rRNA gene sequence similarity over 98 %. These data suggested that strain RHZ10 T represented a novel species within the genus Streptomyces . The genome of RHZ10 T was 8.0 Mbp long, had 7 894 predicted coding genes, and a G+C content of 71.7 mol%. Cultures of RHZ10 T on ISP 2 medium mostly led to the production a green pigmentation of the core of its colonies in the vegetative mycelium, surrounded by white pigmentation of the aerial mycelium. The main fatty acids of RHZ10 T were anteiso-C 15 : 0 , iso-C 16 : 0 , anteiso-C 17 : 0 and C 16 : 0 . Polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, unidentified lipids, unidentified phospholipids, unidentified aminolipids and unidentified glycolipids. Its main quinones were MK-9(H 6 ) (69.3 %), MK-9(H 4 ) (17.3 %) and MK-9(H 8 ) (17.0%). Phylogenetic, physiological and chemotaxonomic studies clearly supported that strain RHZ10 T represents a novel species within the genus Streptomyces , for which the name Streptomyces durocortorensis sp. nov. is proposed and the type strain is RHZ10 T (=DSM 112634 T =LMG 32187 T =CIP 111907 T )

    Abundance, Diversity and Activity of Sulfate-Reducing Prokaryotes in Heavy Metal-Contaminated Sediment from a Salt Marsh in the Medway Estuary (UK)

    No full text
    International audienceWe investigated the diversity and activity of sulfate-reducing prokaryotes (SRP) in a 3.5-m sediment core taken from a heavy metal-contaminated site in the Medway Estuary, UK. The abundance of SRPs was quantified by qPCR of the dissimilatory sulfite reductase gene β-subunit (dsrB) and taking into account DNA extraction efficiency. This showed that SRPs were abundant throughout the core with maximum values in the top 50 cm of the sediment core making up 22.4% of the total bacterial community and were 13.6% at 250 cm deep. Gene libraries for dsrA (dissimilatory sulfite reductase α-subunit) were constructed from the heavily contaminated (heavy metals) surface sediment (top 20 cm) and from the less contaminated and sulfate-depleted, deeper zone (250 cm). Certain cloned sequences were similar to dsrA found in members of the Syntrophobacteraceae, Desulfobacteraceae and Desulfovibrionaceae as well as a large fraction (60%) of novel sequences that formed a deep branching dsrA lineage. Phylogenetic analysis of metabolically active SRPs was performed by reverse transcription PCR and single strand conformational polymorphism analysis (RT-PCR-SSCP) of dsrA genes derived from extracted sediment RNA. Subsequent comparative sequence analysis of excised SSCP bands revealed a high transcriptional activity of dsrA belonging to Desulfovibrio species in the surface sediment. These results may suggest that members of the Desulfovibrionaceae are more active than other SRP groups in heavy metal-contaminated surface sediments

    Draft Genome Sequence of Pseudomonas syringae PDD-32b-74, a Model Strain for Ice-Nucleation Studies in the Atmosphere

    No full text
    International audienceWe report here the whole genome sequence of Pseudomonas syringae PDD-32b-74, a gammaproteobacterium isolated from cloud water. This microorganism is equipped with ice-nucleation protein and biosurfactant genes that could potentially be involved in physicochemical processes in the atmosphere and clouds
    • …
    corecore