219 research outputs found

    Costs and benefits of multiple resistance to insecticides for Culex quinquefasciatus mosquitoes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The evolutionary dynamics of xenobiotic resistance depends on how resistance mutations influence the fitness of their bearers, both in the presence and absence of xenobiotic selection pressure. In cases of multiple resistance, these dynamics will also depend on how individual resistance mutations interact with one another, and on the xenobiotics applied against them. We compared <it>Culex quinquefasciatus </it>mosquitoes harbouring two resistance alleles <it>ace-1</it><sup><it>R </it></sup>and <it>Kdr</it><sup><it>R </it></sup>(conferring resistance to carbamate and pyrethroid insecticides, respectively) to mosquitoes bearing only one of the alleles, or neither allele. Comparisons were made in environments where both, only one, or neither type of insecticide was present.</p> <p>Results</p> <p>Each resistance allele was associated with fitness costs (survival to adulthood) in an insecticide-free environment, with the costs of <it>ace-1</it><sup><it>R </it></sup>being greater than for <it>Kdr</it><sup><it>R</it></sup>. However, there was a notable interaction in that the costs of harbouring both alleles were significantly less than for harbouring <it>ace-1</it><sup><it>R </it></sup>alone. The two insecticides combined in an additive, synergistic and antagonistic manner depending on a mosquito's resistance status, but were not predictable based on the presence/absence of either, or both mutations.</p> <p>Conclusion</p> <p>Insecticide resistance mutations interacted to positively or negatively influence a mosquito's fitness, both in the presence or absence of insecticides. In particular, the presence of the <it>Kdr</it><sup><it>R </it></sup>mutation compensated for the costs of the <it>ace-1</it><sup><it>R </it></sup>mutation in an insecticide-free environment, suggesting the strength of selection in untreated areas would be less against mosquitoes resistant to both insecticides than for those resistant to carbamates alone. Additional interactions suggest the dynamics of resistance will be difficult to predict in populations where multiple resistance mutations are present or that are subject to treatment by different xenobiotics.</p

    Forty Years of Erratic Insecticide Resistance Evolution in the Mosquito Culex pipiens

    Get PDF
    One view of adaptation is that it proceeds by the slow and steady accumulation of beneficial mutations with small effects. It is difficult to test this model, since in most cases the genetic basis of adaptation can only be studied a posteriori with traits that have evolved for a long period of time through an unknown sequence of steps. In this paper, we show how ace-1, a gene involved in resistance to organophosphorous insecticide in the mosquito Culex pipiens, has evolved during 40 years of an insecticide control program. Initially, a major resistance allele with strong deleterious side effects spread through the population. Later, a duplication combining a susceptible and a resistance ace-1 allele began to spread but did not replace the original resistance allele, as it is sublethal when homozygous. Last, a second duplication, (also sublethal when homozygous) began to spread because heterozygotes for the two duplications do not exhibit deleterious pleiotropic effects. Double overdominance now maintains these four alleles across treated and nontreated areas. Thus, ace-1 evolution does not proceed via the steady accumulation of beneficial mutations. Instead, resistance evolution has been an erratic combination of mutation, positive selection, and the rearrangement of existing variation leading to complex genetic architecture

    Costs of insensitive acetylcholinesterase insecticide resistance for the malaria vector Anopheles gambiae homozygous for the G119S mutation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The G119S mutation responsible for insensitive acetylcholinesterase resistance to organophosphate and carbamate insecticides has recently been reported from natural populations of <it>Anopheles gambiae </it>in West Africa. These reports suggest there are costs of resistance associated with this mutation for <it>An. gambiae</it>, especially for homozygous individuals, and these costs could be influential in determining the frequency of carbamate resistance in these populations.</p> <p>Methods</p> <p>Life-history traits of the AcerKis and Kisumu strains of <it>An. gambiae </it>were compared following the manipulation of larval food availability in three separate experiments conducted in an insecticide-free laboratory environment. These two strains share the same genetic background, but differ in being homozygous for the presence or absence of the G119S mutation at the <it>ace-1 </it>locus, respectively.</p> <p>Results</p> <p>Pupae of the resistant strain were significantly more likely to die during pupation than those of the susceptible strain. Ages at pupation were significantly earlier for the resistant strain and their dry starved weights were significantly lighter; this difference in weight remained when the two strains were matched for ages at pupation.</p> <p>Conclusions</p> <p>The main cost of resistance found for <it>An. gambiae </it>mosquitoes homozygous for the G119S mutation was that they were significantly more likely to die during pupation than their susceptible counterparts, and they did so across a range of larval food conditions. Comparing the frequency of G119S in fourth instar larvae and adults emerging from the same populations would provide a way to test whether this cost of resistance is being expressed in natural populations of <it>An. gambiae </it>and influencing the dynamics of this resistance mutation.</p

    Differential Expression of Salivary Proteins between Susceptible and Insecticide-Resistant Mosquitoes of Culex quinquefasciatus

    Get PDF
    Background: The Culex quinquefasciatus mosquito, a major pest and vector of filariasis and arboviruses in the tropics, has developed multiple resistance mechanisms to the main insecticide classes currently available in public health. Among them, the insensitive acetylcholinesterase (ace-1(R) allele) is widespread worldwide and confers cross-resistance to organophosphates and carbamates. Fortunately, in an insecticide-free environment, this mutation is associated with a severe genetic cost that can affect various life history traits. Salivary proteins are directly involved in human-vector contact during biting and therefore play a key role in pathogen transmission. Methods and Results: An original proteomic approach combining 2D-electrophoresis and mass spectrometry was adopted to compare the salivary expression profiles of two strains of C. quinquefasciatus with the same genetic background but carrying either the ace-1(R) resistance allele or not (wild type). Four salivary proteins were differentially expressed (> 2 fold, P < 0.05) in susceptible (SLAB) and resistant (SR) mosquito strains. Protein identification indicated that the D7 long form, a major salivary protein involved in blood feeding success, presented lower expression in the resistant strain than the susceptible strain. In contrast, three other proteins, including metabolic enzymes (endoplasmin, triosephosphate isomerase) were significantly over-expressed in the salivary gland of ace-1(R) resistant mosquitoes. A catalogue of 67 salivary proteins of C. quinquefasciatus sialotranscriptome was also identified and described. Conclusion: The "resistance"-dependent expression of salivary proteins in mosquitoes may have considerable impact on biting behaviour and hence on the capacity to transmit parasites/viruses to humans. The behaviour of susceptible and insecticide-resistant mosquitoes in the presence of vertebrate hosts and its impact on pathogen transmission urgently requires further investigation

    Nutrients

    Get PDF
    Recent evidence suggests that a high glycemic load (GL) diet is a risk factor for dementia, especially among apolipoprotein E ε4 allele (APOE4) carriers, while its association with cognitive decline is poorly known. Here, we investigated the association of high-GL meals with cognitive decline in older adults during a 12-year follow-up, according to their APOE4 carrier status. We used random-effect models and data from 2539 elderly participants from the Three-City study who completed a food frequency questionnaire (FFQ) to longitudinally assess the association of GL with changes in different cognitive domains (verbal fluency, visual memory, attention, visual motor processing speed, episodic memory). In APOE4 carriers, afternoon snack with high GL was significantly associated with cognitive decline in visual memory, episodic memory, and global cognition compared with APOE4 non-carriers. This study suggests a detrimental association between a high-GL diet and cognitive decline. The promotion of a low GL diet as a target to prevent cognitive decline in high-risk populations deserves more research

    Dietary Glycemic Load and Plasma Amyloid-β Biomarkers of Alzheimer's Disease

    Get PDF
    Previous studies have highlighted links between a high-glycemic-load (GL) diet and Alzheimer's disease in apolipoprotein E ε4 (APOE4) carriers. However, the impact of high-GL diet on plasma amyloid-β (Aβ), an Alzheimer's disease hallmark that can be detected decades before clinical symptomatology, is unknown. This study examined the association between plasma Aβ peptides (Aβ(40), Aβ(42) concentration and Aβ(42)/Aβ(40) ratio) and GL. The influence of the GL of four meal types (breakfast, lunch, afternoon snack, and dinner) was also determined. From the prospective Three-City study, 377 participants with plasma Aβ measurements, and who completed the Food Frequency Questionnaire, were selected. The association between plasma Aβ and GL was tested using an adjusted linear regression model. Lunch GL was associated with a lower plasma Aβ(42) concentration (β = -2.2 [CI = -4.27, -0.12], p = 0.038) and lower Aβ(42)/Aβ(40) ratio (β = -0.009 [CI = -0.0172, -0.0007], p = 0.034) in the model adjusted for center, age, sex, education level, APOE4 status, energy intake, serum creatinine, total cholesterol, and Mediterranean-like diet. No significant association was found with the GL of the other meal types. These results suggest that dietary GL may independently modulate the plasma Aβ of the APOE4 status. The mechanism underlying diet, metabolic response, and Aβ peptide regulation must be elucidated

    Target-site resistance mutations (kdr and RDL), but not metabolic resistance, negatively impact male mating competiveness in the malaria vector Anopheles gambiae

    Get PDF
    The implementation of successful insecticide resistance management strategies for malaria control is currently hampered by poor understanding of the fitness cost of resistance on mosquito populations, including their mating competiveness. To fill this knowledge gap, coupled and uncoupled Anopheles gambiae s.l. males (all M form (Anopheles coluzzii)) were collected from mating swarms in Burkina Faso. This multiple insecticide resistant population exhibited high 1014F kdrR allele frequencies (460%) and RDLR (480%) in contrast to the Ace-1R allele (o6%). Kdr heterozygote males were more likely to mate than homozygote resistant (OR=2.36; Po0.001), suggesting a negative impact of kdr on An. coluzzii mating ability. Interestingly, heterozygote males were also more competitive than homozygote susceptible (OR=3.26; P=0.006), suggesting a heterozygote advantage effect. Similarly, heterozygote RDLR/RDLS were also more likely to mate than homozygote-resistant males (OR=2.58; P=0.007). Furthermore, an additive mating disadvantage was detected in male homozygotes for both kdr/RDL-resistant alleles. In contrast, no fitness difference was observed for the Ace-1 mutation. Comparative microarray-based genome-wide transcription analysis revealed that metabolic resistance did not significantly alter the mating competitiveness of male An. coluzzii mosquitoes. Indeed, no significant difference of expression levels was observed for the main metabolic resistance genes, suggesting that metabolic resistance has a limited impact on male mating competiveness. In addition, specific gene classes/GO terms associated with mating process were detected including sensory perception and peroxidase activity. The detrimental impact of insecticide resistance on mating competiveness observed here suggests that resistance management strategies such as insecticide rotation could help reverse the resistance, if implemented early

    Evidence of Introgression of the ace-1R Mutation and of the ace-1 Duplication in West African Anopheles gambiae s. s

    Get PDF
    Background: The role of inter-specific hybridisation is of particular importance in mosquito disease vectors for predicting the evolution of insecticide resistance. Two molecular forms of Anopheles gambiae s.s., currently recognized as S and M taxa, are considered to be incipient sibling species. Hybrid scarcity in the field was suggested that differentiation of M and S taxa is maintained by limited or absent gene flow. However, recent studies have revealed shared polymorphisms within the M and S forms, and a better understanding of the occurrence of gene flow is needed. One such shared polymorphism is the G119S mutation in the ace-1 gene (which is responsible for insecticide resistance); this mutation has been described in both the M and S forms of A. gambiae s.s. Methods and Results: To establish whether the G119S mutation has arisen independently in each form or by genetic introgression, we analysed coding and non-coding sequences of ace-1 alleles in M and S mosquitoes from representative field populations. Our data revealed many polymorphic sites shared by S and M forms, but no diversity was associated with the G119S mutation. These results indicate that the G119S mutation was a unique event and that genetic introgression explains the observed distribution of the G119S mutation within the two forms. However, it was impossible to determine from our data whether the mutation occurred first in the S form or in the M form. Unexpectedly, sequence analysis of some resistant individuals revealed a duplication of the ace-1 gene that was observed in both A. gambiae s.s. M and S forms. Again, the distribution of this duplication in the two forms most likely occurred through introgression. Conclusions: These results highlight the need for more research to understand the forces driving the evolution of insecticide resistance in malaria vectors and to regularly monitor resistance in mosquito populations of Africa

    Fitness costs of key point mutations that underlie acaricide target-site resistance in the two-spotted spider mite Tetranychus urticae

    Get PDF
    The frequency of insecticide/acaricide target-site resistance is increasing in arthropod pest populations and is typically underpinned by single point mutations that affect the binding strength between the insecticide/acaricide and its target-site. Theory predicts that although resistance mutations clearly have advantageous effects under the selection pressure of the insecticide/acaricide, they might convey negative pleiotropic effects on other aspects of fitness. If such fitness costs are in place, target-site resistance is thus likely to disappear in the absence of insecticide/acaricide treatment, a process that would counteract the spread of resistance in agricultural crops. Hence, there is a great need to reliably quantify the various potential pleiotropic effects of target-site resistance point mutations on arthropod fitness. Here, we used near-isogenic lines of the spider mite pest Tetranychus urticae that carry well-characterized acaricide target-site resistance mutations to quantify potential fitness costs. Specifically, we analyzed P262T in the mitochondrial cytochrome b, the combined G314D and G326E substitutions in the glutamate-gated chloride channels, L1024V in the voltage-gated sodium channel, and I1017F in chitin synthase 1. Five fertility life table parameters and nine single-generation life-history traits were quantified and compared across a total of 15 mite lines. In addition, we monitored the temporal resistance level dynamics of populations with different starting frequency levels of the chitin synthase resistant allele to further support our findings. Three target-site resistance mutations, I1017F and the co-occurring G314D and G326E mutations, were shown to significantly and consistently alter certain fitness parameters in T. urticae. The other two mutations (P262T and L1024V) did not result in any consistent change in a fitness parameter analyzed in our study. Our findings are discussed in the context of the global spread of T. urticae pesticide resistance and integrated pest management

    Molecular data reveal a cryptic species within the Culex pipiens mosquito complex

    Get PDF
    This is the peer reviewed version of the following article: Dumas, E., Atyame, C. M., Malcolm, C. A., Le Goff, G., Unal, S., Makoundou, P., Pasteur, N., Weill, M. and Duron, O. (2016), Molecular data reveal a cryptic species within the Culex pipiens mosquito complex. Insect Mol Biol, 25: 800–809,which has been published in final form at doi:10.1111/imb.12264. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. © 2016 The Royal Entomological Society.The Culex pipiens mosquito complex is a group of evolutionarily closely related species including the common house mosquito, Cx. pipiens, and the southern house mosquito, Cx. quinquefasciatus, which both are infected by the cytoplasmically inherited Wolbachia symbiont. A Wolbachia-uninfected population of Cx. pipiens was however described in South Africa and was recently proposed to represent a cryptic species where Wolbachia spread has been prevented by reproductive isolation. In this study, we reconsider the existence of this novel species by undertaking an extensive screening for the presence of Wolbachia-uninfected Cx. pipiens specimens and by characterizing their genetic relatedness with known members of the complex. We first reported on the presence of Wolbachia-uninfected specimens in several Cx. pipiens breeding sites in Europe and North Africa. Using a multi-locus typing scheme, we next confirm that these uninfected specimens unambiguously belong to the Cx. pipiens complex. While, uninfected specimens shared ancestral nuclear DNA polymorphism with infected Cx. pipiens specimens, they also harbor novel mitochondrial haplotypes which are closely related, but different, to those found in all other Cx. pipiens complex members. Overall, these results corroborate the presence of a cryptic species within the Cx. pipiens complex where ancestral levels of mitochondrial diversity have been maintained. We further evidence a geographic distribution far wider than previously suspected, ranging from the North of Europe to the South of Africa.Peer reviewe
    corecore