87 research outputs found

    Differences in the Control of Secondary Peristalsis in the Human Esophagus: Influence of the 5-HT4 Receptor versus the TRPV1 Receptor

    Get PDF
    Objective Acute administration of 5-hydroxytryptamine4 (5-HT4) receptor agonist, mosapride or esophageal infusion of the transient receptor potential vanilloid receptor-1 (TRPV1) agonist capsaicin promotes secondary peristalsis. We aimed to investigate whether acute esophageal instillation of capsaicin-containing red pepper sauce or administration of mosapride has different effects on the physiological characteristics of secondary peristalsis. Methods Secondary peristalsis was induced with mid-esophageal air injections in 14 healthy subjects. We compared the effects on secondary peristalsis subsequent to capsaicin-containing red pepper sauce (pure capsaicin, 0.84 mg) or 40 mg oral mosapride. Results The threshold volume for generating secondary peristalsis during slow air distensions was significantly decreased with capsaicin infusion compared to mosapride (11.6 ± 1.0 vs. 14.1 ± 0.8 mL, P = 0.02). The threshold volume required to produce secondary peristalsis during rapid air distension was also significantly decreased with capsaicin infusion (4.6 ± 0.5 vs. 5.2 ± 0.6 mL, P = 0.02). Secondary peristalsis was noted more frequently in response to rapid air distension after capsaicin infusion than mosapride (80% 60–100% vs. 65% 5–100%, P = 0.04). Infusion of capsaicin or mosapride administration didn’t change any parameters of primary or secondary peristalsis. Conclusions Esophageal infusion with capsaicin-containing red pepper sauce suspension does create greater mechanosensitivity as measured by secondary peristalsis than 5-HT4 receptor agonist mosapride. Capsaicin-sensitive afferents appear to be more involved in the sensory modulation of distension-induced secondary peristalsis.Yeshttp://www.plosone.org/static/editorial#pee

    GABAergic and Cortical and Subcortical Glutamatergic Axon Terminals Contain CB1 Cannabinoid Receptors in the Ventromedial Nucleus of the Hypothalamus

    Get PDF
    Background: Type-1 cannabinoid receptors (CB1R) are enriched in the hypothalamus, particularly in the ventromedial hypothalamic nucleus (VMH) that participates in homeostatic and behavioral functions including food intake. Although CB1R activation modulates excitatory and inhibitory synaptic transmission in the brain, CB1R contribution to the molecular architecture of the excitatory and inhibitory synaptic terminals in the VMH is not known. Therefore, the aim of this study was to investigate the precise subcellular distribution of CB1R in the VMH to better understand the modulation exerted by the endocannabinoid system on the complex brain circuitries converging into this nucleus. Methodology/Principal Findings: Light and electron microscopy techniques were used to analyze CB1R distribution in the VMH of CB1R-WT, CB1R-KO and conditional mutant mice bearing a selective deletion of CB1R in cortical glutamatergic (Glu-CB1R-KO) or GABAergic neurons (GABA-CB1R-KO). At light microscopy, CB1R immunolabeling was observed in the VMH of CB1R-WT and Glu-CB1R-KO animals, being remarkably reduced in GABA-CB1R-KO mice. In the electron microscope, CB1R appeared in membranes of both glutamatergic and GABAergic terminals/preterminals. There was no significant difference in the percentage of CB1R immunopositive profiles and CB1R density in terminals making asymmetric or symmetric synapses in CB1R-WT mice. Furthermore, the proportion of CB1R immunopositive terminals/preterminals in CB1R-WT and Glu-CB1R-KO mice was reduced in GABA-CB1R-KO mutants. CB1R density was similar in all animal conditions. Finally, the percentage of CB1R labeled boutons making asymmetric synapses slightly decreased in Glu-CB1R-KO mutants relative to CB1R-WT mice, indicating that CB1R was distributed in cortical and subcortical excitatory synaptic terminals. Conclusions/Significance: Our anatomical results support the idea that the VMH is a relevant hub candidate in the endocannabinoid-mediated modulation of the excitatory and inhibitory neurotransmission of cortical and subcortical pathways regulating essential hypothalamic functions for the individual's survival such as the feeding behavior.L. Reguero is in receipt of a Predoctoral Fellowship from the Basque Country Government (BFI 07.286); I. Buceta is in receipt of a Predoctoral Fellowship from the Basque Country University. Dr. Pedro Grandes' laboratory is supported by The Basque Country Government grant GIC07/70-IT-432-07, by Ministerio de Ciencia e Innovacion (SAF2009-07065) and by Red de Trastornos Adictivos, RETICS, Instituto de Salud Carlos III, MICINN, grant RD07/0001/2001. Dr. Giovanni Marsicano's laboratory is supported by AVENIR/INSERM (with the Fondation Bettencourt-Schueller), by ANR (ANR-06-NEURO-043-01), by European Foundation for the Study of Diabetes (EFSD), by the EU-FP7 (REPROBESITY, contract number HEALTH-F2-2008-223713) and European Commission Coordination Action ENINET (contract number LSHM-CT-2005-19063). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Extrinsic primary afferent signalling in the gut

    Get PDF
    Visceral sensory neurons activate reflex pathways that control gut function and also give rise to important sensations, such as fullness, bloating, nausea, discomfort, urgency and pain. Sensory neurons are organised into three distinct anatomical pathways to the central nervous system (vagal, thoracolumbar and lumbosacral). Although remarkable progress has been made in characterizing the roles of many ion channels, receptors and second messengers in visceral sensory neurons, the basic aim of understanding how many classes there are, and how they differ, has proven difficult to achieve. We suggest that just five structurally distinct types of sensory endings are present in the gut wall that account for essentially all of the primary afferent neurons in the three pathways. Each of these five major structural types of endings seems to show distinctive combinations of physiological responses. These types are: 'intraganglionic laminar' endings in myenteric ganglia; 'mucosal' endings located in the subepithelial layer; 'muscular–mucosal' afferents, with mechanosensitive endings close to the muscularis mucosae; 'intramuscular' endings, with endings within the smooth muscle layers; and 'vascular' afferents, with sensitive endings primarily on blood vessels. 'Silent' afferents might be a subset of inexcitable 'vascular' afferents, which can be switched on by inflammatory mediators. Extrinsic sensory neurons comprise an attractive focus for targeted therapeutic intervention in a range of gastrointestinal disorders.Australian National Health and Medical Research Counci

    Age-dependent effects of protein restriction on dopamine release

    Get PDF
    FUNDING AND DISCLOSURE This work was supported by the Biotechnology and Biological Sciences Research Council [grant # BB/M007391/1 to J.E.M.], the European Commission [grant # GA 631404 to J.E.M.], The Leverhulme Trust [grant # RPG-2017-417 to J.E.M.] and the Tromsø Research Foundation [grant # 19-SG-JMcC to J. E. M.). The authors declare no conflict of interest. ACKNOWLEDGEMENTS The authors would like to acknowledge the help and support from the staff of the Division of Biomedical Services, Preclinical Research Facility, University of Leicester, for technical support and the care of experimental animals.Peer reviewedPublisher PD

    Desire and Dread from the Nucleus Accumbens: Cortical Glutamate and Subcortical GABA Differentially Generate Motivation and Hedonic Impact in the Rat

    Get PDF
    Background: GABAergic signals to the nucleus accumbens (NAc) shell arise from predominantly subcortical sources whereas glutamatergic signals arise mainly from cortical-related sources. Here we contrasted GABAergic and glutamatergic generation of hedonics versus motivation processes, as a proxy for comparing subcortical and cortical controls of emotion. Local disruptions of either signals in medial shell of NAc generate intense motivated behaviors corresponding to desire and/or dread, along a rostrocaudal gradient. GABA or glutamate disruptions in rostral shell generate appetitive motivation whereas disruptions in caudal shell elicit fearful motivation. However, GABA and glutamate signals in NAc differ in important ways, despite the similarity of their rostrocaudal motivation gradients. Methodology/Principal Findings: Microinjections of a GABAA agonist (muscimol), or of a glutamate AMPA antagonist (DNQX) in medial shell of rats were assessed for generation of hedonic ‘‘liking’ ’ or ‘‘disliking’ ’ by measuring orofacial affective reactions to sucrose-quinine taste. Motivation generation was independently assessed measuring effects on eating versus natural defensive behaviors. For GABAergic microinjections, we found that the desire-dread motivation gradient was mirrored by an equivalent hedonic gradient that amplified affective taste ‘‘liking’ ’ (at rostral sites) versus ‘‘disliking’ ’ (at caudal sites). However, manipulation of glutamatergic signals completely failed to alter pleasure-displeasure reactions to sensory hedonic impact, despite producing a strong rostrocaudal gradient of motivation

    Cancer Genomics Identifies Regulatory Gene Networks Associated with the Transition from Dysplasia to Advanced Lung Adenocarcinomas Induced by c-Raf-1

    Get PDF
    Background: Lung cancer is a leading cause of cancer morbidity. To improve an understanding of molecular causes of disease a transgenic mouse model was investigated where targeted expression of the serine threonine kinase c-Raf to respiratory epithelium induced initialy dysplasia and subsequently adenocarcinomas. This enables dissection of genetic events associated with precancerous and cancerous lesions. Methodology/Principal Findings: By laser microdissection cancer cell populations were harvested and subjected to whole genome expression analyses. Overall 473 and 541 genes were significantly regulated, when cancer versus transgenic and non-transgenic cells were compared, giving rise to three distinct and one common regulatory gene network. At advanced stages of tumor growth predominately repression of gene expression was observed, but genes previously shown to be upregulated in dysplasia were also up-regulated in solid tumors. Regulation of developmental programs as well as epithelial mesenchymal and mesenchymal endothelial transition was a hall mark of adenocarcinomas. Additionaly, genes coding for cell adhesion, i.e. the integrins and the tight and gap junction proteins were repressed, whereas ligands for receptor tyrosine kinase such as epi- and amphiregulin were up-regulated. Notably, Vegfr- 2 and its ligand Vegfd, as well as Notch and Wnt signalling cascades were regulated as were glycosylases that influence cellular recognition. Other regulated signalling molecules included guanine exchange factors that play a role in an activation of the MAP kinases while several tumor suppressors i.e. Mcc, Hey1, Fat3, Armcx1 and Reck were significantly repressed. Finally, probable molecular switches forcing dysplastic cells into malignantly transformed cells could be identified. Conclusions/Significance: This study provides insight into molecular pertubations allowing dysplasia to progress further to adenocarcinoma induced by exaggerted c-Raf kinase activity

    Language in international business: a review and agenda for future research

    Get PDF
    A fast growing number of studies demonstrates that language diversity influences almost all management decisions in modern multinational corporations. Whereas no doubt remains about the practical importance of language, the empirical investigation and theoretical conceptualization of its complex and multifaceted effects still presents a substantial challenge. To summarize and evaluate the current state of the literature in a coherent picture informing future research, we systematically review 264 articles on language in international business. We scrutinize the geographic distributions of data, evaluate the field’s achievements to date in terms of theories and methodologies, and summarize core findings by individual, group, firm, and country levels of analysis. For each of these dimensions, we then put forward a future research agenda. We encourage scholars to transcend disciplinary boundaries and to draw on, integrate, and test a variety of theories from disciplines such as psychology, linguistics, and neuroscience to gain a more profound understanding of language in international business. We advocate more multi-level studies and cross-national research collaborations and suggest greater attention to potential new data sources and means of analysis

    Food-associated cues alter forebrain functional connectivity as assessed with immediate early gene and proenkephalin expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cues predictive of food availability are powerful modulators of appetite as well as food-seeking and ingestive behaviors. The neurobiological underpinnings of these conditioned responses are not well understood. Monitoring regional immediate early gene expression is a method used to assess alterations in neuronal metabolism resulting from upstream intracellular and extracellular signaling. Furthermore, assessing the expression of multiple immediate early genes offers a window onto the possible sequelae of exposure to food cues, since the function of each gene differs. We used immediate early gene and proenkephalin expression as a means of assessing food cue-elicited regional activation and alterations in functional connectivity within the forebrain.</p> <p>Results</p> <p>Contextual cues associated with palatable food elicited conditioned motor activation and corticosterone release in rats. This motivational state was associated with increased transcription of the activity-regulated genes <it>homer1a</it>, <it>arc</it>, <it>zif268</it>, <it>ngfi-b </it>and c-<it>fos </it>in corticolimbic, thalamic and hypothalamic areas and of proenkephalin within striatal regions. Furthermore, the functional connectivity elicited by food cues, as assessed by an inter-regional multigene-expression correlation method, differed substantially from that elicited by neutral cues. Specifically, food cues increased cortical engagement of the striatum, and within the nucleus accumbens, shifted correlations away from the shell towards the core. Exposure to the food-associated context also induced correlated gene expression between corticostriatal networks and the basolateral amygdala, an area critical for learning and responding to the incentive value of sensory stimuli. This increased corticostriatal-amygdalar functional connectivity was absent in the control group exposed to innocuous cues.</p> <p>Conclusion</p> <p>The results implicate correlated activity between the cortex and the striatum, especially the nucleus accumbens core and the basolateral amygdala, in the generation of a conditioned motivated state that may promote excessive food intake. The upregulation of a number of genes in unique patterns within corticostriatal, thalamic, and hypothalamic networks suggests that food cues are capable of powerfully altering neuronal processing in areas mediating the integration of emotion, cognition, arousal, and the regulation of energy balance. As many of these genes play a role in plasticity, their upregulation within these circuits may also indicate the neuroanatomic and transcriptional correlates of extinction learning.</p

    High production of pro-inflammatory cytokines by maternal blood mononuclear cells is associated with reduced maternal malaria but increased cord blood infection

    Get PDF
    BACKGROUND: Increased susceptibility to malaria during pregnancy is not completely understood. Cellular immune responses mediate both pathology and immunity but the effector responses involved in these processes have not been fully characterized. Maternal and fetal cytokine and chemokine responses to malaria at delivery, and their association with pregnancy and childhood outcomes, were investigated in 174 samples from a mother and child cohort from Mozambique. Peripheral and cord mononuclear cells were stimulated with Plasmodium falciparum lysate and secretion of IL-12p70, IFN-gamma, IL-2, IL-10, IL-8, IL-6, IL-4, IL-5, IL-1beta, TNF, TNF-beta was quantified in culture supernatants by multiplex flow cytometry while cellular mRNA expression of IFN-gamma, TNF, IL-2, IL-4, IL-6, IL-10 and IL-13 was measured by quantitative PCR. RESULTS: Higher concentrations of IL-6 and IL-1beta were associated with a reduced risk of P. falciparum infection in pregnant women (p < 0.049). Pro-inflammatory cytokines IL-6, IL-1beta and TNF strongly correlated among themselves (rho > 0.5, p < 0.001). Higher production of IL-1beta was significantly associated with congenital malaria (p < 0.046) and excessive TNF was associated with peripheral infection and placental lesions (p < 0.044). CONCLUSIONS: Complex network of immuno-pathological cytokine mechanisms in the placental and utero environments showed a potential trade-off between positive and negative effects on mother and newborn susceptibility to infection
    corecore