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Abstract 

Visceral sensory neurons activate reflex pathways that control gut function and also give rise 

to important sensations, such as fullness, bloating, nausea, discomfort, urgency and pain. Sen-

sory neurons are organised into three distinct anatomical pathways to the central nervous sys-

tem (vagal, thoracolumbar and lumbosacral). Although remarkable progress has been made in 

characterizing the roles of many ion channels, receptors, and second messengers in visceral 

sensory neurons, the basic aim of understanding how many classes there are, and how they 

differ, has proven difficult to achieve. We suggest that there are just five structurally distinct 

types of sensory endings in the gut wall that account for essentially all of the primary afferent 

neurons in the three pathways. Each of these five major structural types of endings seems to 

show distinctive combinations of physiological responses. These types are: ‘intraganglionic 

laminar’ endings in myenteric ganglia; ‘mucosal’ endings located in the subepithelial layer; 

‘muscular mucosal’ afferents, with mechanosensitive endings close to the muscularis muco-

sae; ‘intramuscular’ endings, with endings within the smooth muscle layers; and ‘vascular’ 

afferents, with sensitive endings primarily on blood vessels. ‘Silent’ afferents might be a sub-

set of inexcitable ‘vascular’ afferents, which can be switched on by inflammatory mediators. 

Extrinsic sensory neurons comprise an attractive focus for targeted therapeutic intervention in 

a range of gastrointestinal disorders. 
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Introduction 

Primary afferent neurons detect physical or chemical stimuli and convey information about 

them to the central nervous system (CNS). Exteroceptors detect external stimuli, propriocep-

tors encode bodily mechanics and interoceptors encode information from viscera. Visceral 

sensory neurons provide input to primitive circuits in the brainstem, and activate at least three 

ascending central pathways that traverse the thalamus en route to the cortex, where infor-

mation is integrated and represented in the insula, cingulate gyrus and somatosensory 

cortices.1–3 Gut sensations start with visceral sensory neurons. However, the CNS is not a pas-

sive recipient of sensory input; sensory processing into the dorsal horn is subject to complex 

modulation.4 Psychological and experiential factors powerfully modify processing via de-

scending spinal pathways.2,3 Excellent reviews of central visceral sensory processing are 

available.1,5 Even in the periphery, visceral sensory neurons do not operate in isolation. Enter-

oendocrine cells of the mucosa, and immune cells in the gut wall both have important roles in 

initiating sensation and in modulating reflex control of the gut.6,7 Interactions between the mi-

crobiota of the gut lumen and the immune system modulate mood and sensation.8–10 Under-

standing the molecular basis of such interactions is currently the subject of intense research 

effort. It is clear that many newly discovered mechanisms are not ubiquitously used  by all 

visceral sensory neurons. To understand how to target sensory neurons therapeutically, a good 

understanding of the different types of sensory neurons and their roles in evoking sensation is 

important. In this Review, we provide a simplified account of the extrinsic sensory pathways 

that link the gut to the CNS, based on the structure of endings in the gut. This scheme is com-

patible with, and might extend, physiologically based classifications of extrinsic primary af-

ferent neurons.  
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Sensory innervation of the gut 

Primary afferent neurons are activated by physical or chemical stimuli and trigger reflex 

pathways controlling function—the subset of these neurons that gives rise to conscious sensa-

tion are called ‘sensory neurons’. In most cases it is uncertain which types of primary affer-

ents actually underlie sensation, so we use the terms ‘sensory neuron’ and ‘primary afferent 

neuron’ interchangeably. Most understanding of gut sensory innervation comes from studies 

in a small number of species of animals (mice, rats, guinea pigs, ferrets, cats, rabbits and 

sheep), although a few studies (including one dating back to the 1960s) have recorded from 

sensory neurons innervating human gut, in vitro.11–13 To the extent that the sparse data enables 

conclusions, sensory nerves in human gut seem similar to those in animals.  

 

Classes of extrinsic afferent neurons  

The extrinsic sensory neurons that innervate the gastrointestinal tract appear to form a baffling 

number of types, classified in many ways by different investigators. Their neurotransmitters 

and modulators, neurochemical markers such as lectin binding sites or neurofilaments, their 

neurotrophic requirements and ion channels and receptors that they express, have all been 

used to distinguish different types of sensory neurons. Physiological features include basal 

firing rate, conduction velocity, adequate stimuli, thresholds, peak firing frequencies, stimu-

lus-response functions and rates of adaptation. Sensitivity to transmitters, hormones and cellu-

lar mediators also vary markedly; afferents have been distinguished on the basis of their re-

sponses to capsaicin, bradykinin, purines, histamine or 5-hydroxytryptamine, among others. 

Morphological characteristics include cell body size and location and the microscopic struc-

ture of peripheral endings.  

 

Using characteristics to distinguish classes of sensory neurons is valid, but two caveats must 

be kept in mind. First, many physiological and pharmacological characteristics show marked 
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plasticity, even during the course of a recording. Acute damage caused by ischaemia, hypoxia, 

dissection or repeatedly applying a blunt probe can modify responses. Second, physiological 

characteristics are rarely binary, that is either present or absent; they are usually graded. Rates 

of adaptation, sensitivity to distension or responses to chemical mediators might range from 

very low to very high in otherwise similar neurons. Bearing these points in mind, primary af-

ferent neurons that mediate sensation from the length of the gastrointestinal tract have been 

classified in many different ways, which has led to what is a rather fragmented current under-

standing. Here, we propose a simplification. We suggest that there are just five basic types of 

sensory neurons innervating the gastrointestinal tract, each with specific anatomical endings 

in the gut wall. Between them, they form the three major extrinsic sensory pathways from the 

gut (vagal, thoracolumbar and lumbosacral). The five types are summarized in Figure 1 and 

include the following: type I : ‘intraganglionic laminar’ endings predominantly located in 

myenteric ganglia within the gut wall, that primarily detect innocuous, and possibly noxious, 

mechanical distortion; type II : ‘mucosal’ afferents, with subepithelial endings, sensitive to 

enteroendocrine cell mediators and light mechanical distortion; type III : ‘muscular–mucosal’ 

afferents, with mechanosensitive endings between the muscularis mucosae and the mucosa 

proper that detect both muscular activity and mucosal distortion; type IV : ‘intramuscular’ 

endings, with endings primarily in the smooth muscle layers in the gut wall that probably de-

tect mechanical stimuli; and type V : ‘vascular’ afferents, with sensitive endings primarily on 

blood vessels, which are sensitive to intense mechanical stimulation, but are modulated by a 

wide range of chemical mediators of damage and inflammation.  Their relative abundance in 

the three pathways is summarised in Table 1. 

 

Dual innervation of each region of the gut  

Each region of the gut receives dual sensory innervation. The oesophagus, stomach, small in-

testine and upper colon are innervated by sensory neurons that originate in the nodose and 
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jugular ganglia, and that project peripherally via the paired vagus nerves. These regions are 

also innervated by thoracolumbar spinal afferent neurons projecting via the splanchnic nerves. 

The lower colon and rectum are also dually innervated, by thoracolumbar spinal afferents and 

by lumbosacral spinal afferents projecting via pelvic and rectal nerves. Thoracolumbar spinal 

afferents run in parallel (and indeed, often in the same nerve trunks) as sympathetic efferent 

pathways to the gut, whereas vagal and sacral spinal afferents run in parallel with parasympa-

thetic efferent pathways to the gut. This arrangement has functional relevance. Vagal afferents 

terminate largely in the nucleus tractus solitarius of the brainstem, where they make mon-

osynaptic14 and polysynaptic connections15 with parasympathetic vagal efferents (in the dorsal 

motor nucleus of the vagus) that innervate the upper gut. Contacts are largely via glutama-

tergic synapses.16 Sympathetic preganglionic neurons receive little monosynaptic input from 

spinal afferents, but there are potent polysynaptic inputs from the dorsal horn.17 Some spinal 

afferents also give rise to collaterals, which directly synapse onto sympathetic post-ganglionic 

neurons in prevertebral ganglia.18 Similarly, pelvic and/or sacral afferent fibres run in parallel 

to sacral parasympathetic outflow and are intimately connected by synapses in the spinal 

cord.19 The anatomical sharing of peripheral nerve trunks by efferents and primary afferents is 

not just parsimonious—it reflects important functional connectivity. 

 

Classification of primary afferent neurons 

Type I: intraganglionic laminar afferents  

Vagal intraganglionic laminar mechanoreceptors 

The first sensory neurons to the gut to be recorded and physiologically characterized were 

low-threshold, tension-sensitive mechanoreceptors.20,21 These are robustly activated by both 

distension and contraction.22 A specialized combination of dye filling and recording tech-

niques made it possible to identify the morphology of the sensory endings that belonged to 

these mechanoreceptors.23,24  Identification was achieved by making extracellular recordings, 
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in vitro, from vagal nerve trunks within 1–2 mm of the specimen of gut. Mechanosensitive 

sites on the preparation were marked by fine carbon particles applied on the tips of von Frey 

hairs used for focal stimulation. At the end of the recording, biotinamide was applied in solu-

tion to the recorded nerve for a period of 4–20 h, during which it was taken up and transported 

to the axon terminals in the tissue.23 After fixation, biotinamide was revealed by streptavidin-

conjugated fluorophores. By comparing dye-filled nerve endings with carbon marks on the 

tissue, the sensory endings of low-threshold vagal mechanoreceptors were shown to corre-

spond to intraganglionic laminar endings (IGLEs) located in myenteric ganglia.24,25  

 

These IGLEs detect distortion of the surrounding tissue by as-yet-unidentified stretch-

activated ion channels26  and probably signal gastric distension after a meal. They end in-

parallel with the smooth muscle fibres of the gut wall, yet respond mechanically as in-series 

tension receptors. This paradox is explained by their fine branching endings within myenteric 

ganglia, which might detect compression of the ganglia by surrounding layers of the gut 

wall.22 Indeed, the mechanical environment of the endings leads to differences in mechano-

sensitivity between the compliant upper stomach and the less distensible, contractile lower 

stomach.27 Although these endings certainly respond to changes in wall tension, they also fire 

for extended periods during maintained distension. IGLEs are found in the oesophagus, stom-

ach, small intestine and in reduced numbers in the upper colon.28,29 Each axon gives rise to 

several IGLEs within a small area24,25 but might also innervate widely separated areas.30,31 

IGLEs have been suggested to detect shear forces between orthogonally arranged (longitudi-

nal and circular) muscle bundles coupled to either face of the ganglion.32  

 

An intriguing feature of IGLEs, shared by many other visceral afferents, is their sensitivity to 

a range of biological mediators. IGLEs are potently excited by ATP,26,33 probably when this 

biochemical is released from damaged cells 34 ATP might also couple mechanosensitive epi-
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thelia to excitation of mechanoreceptors;35,36 however, the time course of ATP release and its 

effects preclude a role in mechanotransduction by IGLEs.26 The same endings in ferret stom-

ach and oesophagus express inhibitory GABAB receptors,37 excitatory and inhibitory metabo-

tropic glutamate receptors38,39 and are inhibited by ghrelin. Responses of IGLEs to ghrelin 

show marked plasticity, being upregulated after overfeeding.40 Such peripheral chemosensi-

tivity might reflect the fact that these receptors have important roles at the endings of these 

sensory neurons in the central nervous system. Alternatively, there might be pathophysiologi-

cal scenarios in which the hormone ghrelin or the transmitters glutamate, GABA or ATP ac-

cumulate within the gut wall to levels that modulate firing of these mechanoreceptors, perhaps 

after release from enteric nerve terminals. 

 

Sacral spinal intraganglionic laminar mechanoreceptors 

Similar, low-threshold, slowly adapting mechanoreceptors have been identified in sacral 

and/or pelvic pathways to the distal bowel. They respond to small distensions of the gut wall, 

within the physiological range caused by normal propulsion of faecal matter. Their transduc-

tion sites correspond to flattened branching endings in myenteric ganglia, called rectal IGLEs 

or rIGLEs. These are morphologically similar to vagal IGLEs, but they are simpler with less 

extensive branching. In the guinea pig, these rIGLEs are abundant in the rectum but are in-

creasingly sparse further up the distal colon.41 Each afferent has endings in multiple enteric 

ganglia. Electrophysiologically, they are typically silent at rest, but are powerfully activated 

by distension, with instantaneous firing frequencies up to 50 Hz.42 The degree of distension at 

which their response saturates has not been determined, but they encode stretch over a wide 

dynamic range, into the noxious extremes146. They are activated by contraction of both the 

longitudinal and circular muscle layers, possibly via compressive forces acting on myenteric 

ganglia.43 Like their vagal counterparts, these endings are rarely responsive to capsaicin, the 

activator of TrpV1 channels (transient receptor potential cation channel subfamily V member 
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1). Similar low-threshold mechanoreceptors have been recorded previously in pelvic path-

ways in the cat,44 rat45 and mouse,46 where they were referred to as ‘muscular’ receptors. 

These primary afferents are probably excited by physiological distension of the distal colon 

and activate parasympathetic reflexes47 that are important in defaecation.48  

 

Type II: mucosal afferents  

Vagal mucosal afferents 

Originally described in the 1950s51, vagal mucosal afferent fibres are not sensitive to disten-

sion or contraction of the upper gut, but can be activated by light stroking or compression of 

the mucosa. Many of these fibres are also sensitive to luminal osmotic, pH and chemical 

stimuli.49–51 Morphologically, several types of vagal mucosal endings have been distin-

guished. In the small intestine there are endings that project along the length of the villi, rami-

fying beneath the epithelial layer52. Another type encircles the Crypts of Lieberkuhn and do 

not penetrate into the villi.52  

 

Vagal mucosal afferents are often potently activated by mediators released from the extensive 

populations of enteroendocrine cells found in the mucosa. There are 10–20 classes of entero-

endocrine cells, each of which releases a subset of about 20 mediators, often in response to 

nutrients.53 Some of these mediators act in a paracrine fashion on primary afferent terminals, 

but some act as true hormones, coordinating secretory and other activity between different 

regions of the gut or by acting in the brain. The most abundant enterendocrine cells are the 

enterochromaffin cells that contain and release much of the body’s 5-hydroxytryptamine, with 

potent effects on mucosal afferents.54 In the mouse stomach, some vagal mucosal afferents are 

directly activated by bile salts.33  
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A subset of enteroendocrine mediators act as satiety factors, largely through local effects on 

vagal mucosal afferent terminals. These include cholecystokinin (CCK), glucagon-like pep-

tide 1 (GLP1), apolipoprotein A-IV, enterostatin, gastrin-releasing peptide (a member of the 

bombesin family), oxyntomodulin, amylin and peptide YY. CCK administration causes re-

duced food intake,55 while antagonists to CCKA receptors substantially increase food intake;56 

thus, endogenous CCK has  a role in controlling meal size. The satiety-inducing effects of 

CCK require an intact vagus nerve.57 CCK excites vagal afferent fibres with mucosal 

endings,58 and both long chain fatty acids and casein cause activation of vagal mucosal affer-

ents, which is blocked by CCKA antagonists.59,60 PYY also excites vagal afferent neurons and 

its satiety-mediating effects might require intact vagal nerve connections,61,62 although it also 

acts hormonally in the brain.63 Even the prototypical hormone, secretin, activates a subset of 

vagal mucosal afferent neurons.64 The action of gut hormones on vagal afferent endings is not 

surprising. The concentration of these mediators in the subepithelial space might reach higher 

orders of magnitude than ever occurs in the bloodstream, particularly when hepatic clearance 

is taken into account. Vagal mucosal afferents probably do not respond generically to all me-

diators: for example, mucosal afferents in the rat jejunum are excited by 5-hydroxytryptamine 

and histamine65 but not by CCK.66 How mucosal mechanical sensitivity relates to chemosen-

sitivity is also unclear; however, mechanosensitivity does not depend on 5-hydroxytryptamine 

signalling from enterochromaffin cells.67  

 

Spinal mucosal afferents 

Low intensity mechanical stimuli applied to the mucosa of the distal bowel activate a class of 

spinal afferents that is insensitive to both distension and contraction. These so-called ‘muco-

sal afferents’ are probably the spinal equivalents of vagal mucosal afferents. They are excited 

by stroking the mucosa with very light von Frey hairs (10 mg) and are strongly activated by 

5-hydroxytryptamine or 5-HT3 agonists.68 Spinal mucosal afferents are more abundant in 
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lumbosacral than thoracolumbar spinal pathways,46 but the detailed structure of their endings 

has not yet been reported. After biotinamide filling of rectal nerves, we observed branching 

varicose afferents in the subepithelial plexus of guinea pig rectum but their location has not 

yet been correlated with physiologically-mapped receptive fields.  

 

Type III: vagal and spinal muscular–mucosal afferents 

Low-threshold, distension-sensitive intraganglionic mechanoreceptors are readily distinguish-

able from mucosal afferent endings, which are not activated by distension or muscle contrac-

tion. However, some extrinsic sensory neurons are activated by both light mucosal distortion 

and by distension or contraction. Vagal ‘tension-mucosal’ receptors have been described in 

the gastro-oesophageal regions of ferrets. These receptors responded to both light mucosal 

stroking and to distension.69 In spinal pathways, receptors that are sensitive to both mucosal 

stroking and to distension have been described in mouse pelvic/sacral pathways. It has been 

suggested that these sensory receptors have two separate transduction sites, in the muscularis 

externa and in the mucosal lamina propria.46 Work from our laboratory suggests that they ac-

tually transduce both distension and mucosal distortion from endings in the subepithelial 

plexus (unpublished data). The role of these afferent fibres is open to speculation, but their 

remarkable sensitivity to mucosal shear suggests that they might detect movement of content 

over the surface of the gastrointestinal tract. In the rectum, we suggest that they might con-

tribute to spinal defaecatory circuits and perhaps conscious sensation.  

 

Type IV: vagal and spinal intramuscular afferents 

Early studies on the morphology of vagal afferents revealed a second anatomical type of fibre 

located in the outer layers of the gut. These ‘intramuscular arrays’ consist of branching fibres 

extending parallel to bundles of muscle fibres in muscularis externa.70 They are densest in the 

fundus and in the sphincteric regions of the stomach71 where they run close to intramuscular 
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interstitital cells of Cajal (ICC).52 This has led to the speculation that intramuscular arrays, 

intramuscular ICC, and possibly efferent nerve fibres, might form functional complexes, per-

haps analogous to striated muscle spindles. To date, no electrophysiological activity has been 

recorded that can confidently be attributed to vagal intramuscular arrays.  

 

Low-threshold, slowly adapting mechanoreceptors, with IGLEs as their transduction sites, are 

not the only vagal mechanoreceptors in the oesophagus. Another population of mechanosensi-

tive afferents, with cell bodies in both nodose and jugular ganglia, has higher thresholds and 

lower net firing rates, a wide dynamic range and graded firing into the noxious range of in-

traluminal pressures. Importantly, many of the axons contain the capsaicin-sensitive TrpV1 

channel, and are frequently peptidergic, similar to many spinal nociceptors.72 Peptide-

containing sensory neurons from the jugular ganglion provide extensive sensory innervation 

to the thoracic oesophagus, airways and heart, but less to the stomach or abdominal organs.73 

Some of these nociceptor-like afferents might give rise to intramuscular-array-like endings in 

the upper gut.  

 

Although intramuscular arrays have been studied extensively in vagal pathways, similar types 

of endings have been described more distally, especially in the large intestine. Dye fills of ex-

trinsic nerve trunks to the colon and internal anal sphincter label arrays of axons within circu-

lar and/or longitudinal muscle layers, particularly in the rectum.41 In mutant mice that lack 

enteric ganglia in the distal bowel, stretch-sensitive mechanoreceptors that transduce mechan-

ical stimuli from intramuscular endings are present.74,75 In the smooth muscle of the internal 

anal sphincter, sacral afferents form arrays of intramuscular endings that are sensitive to both 

distension and to light von Frey hairs.76 Although these endings are likely to be mechanosen-

sitive, little physiological evidence exists to date as to whether they are likely to function as 

tension receptors, length receptors or a combination of the two. 
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Type V: Spinal vascular afferents  

Spinal afferent innervation of the gut arises from dorsal root ganglia in thoracolumbar and 

lumbosacral segments, except for the upper oesophagus, which is innervated by cervical spi-

nal afferents.77,78 In the mouse colon, most of the thoracolumbar spinal afferent endings can 

be activated by strong local compression of the mesenteries or wall of the gut.46 First de-

scribed in the 1960s, these endings are associated with branch points of mesenteric arteries 

and encode both contraction and distension of the gut wall and traction on the mesenteries,79  

with relatively low sensitivity. This low sensitivity is particularly marked in the noncompli-

ant, thick-walled mouse colorectum,80 which might have led to their distension sensitivity be-

ing missed in some studies.46,81 Similar afferent endings have been confirmed in other regions 

of the gut in several species.82–84 These vascular afferent endings are also associated with oth-

er viscera, including the spleen, ovary, bladder and pancreas.85 Endings of this type are sensi-

tive to ischaemia, hypoxia and capsaicin,86–88 and they are believed to comprise a major type 

of nociceptor. They are also sensitive to changes in perfusion rate, with an increased firing 

rate during reduced flow,89 although this seems to depend more on mechanical factors than 

oxygen delivery.90 Given that these receptors can be activated by blunt probing or compres-

sion on the outer wall of the gut, they were initially described as ‘serosal’ receptors.50 Later, 

they were subdivided into ‘mesenteric’ and ‘serosal’, depending on the location of their 

mechano-sensitive sites50.  

Vascular afferents comprise about one-third of lumbosacral spinal afferents to the gut46 but a 

much higher proportion of thoracolumbar spinal afferents. Intracellular recordings from lum-

bosacral dorsal root ganglion neurons revealed two populations of mechanosensitive neurons; 

one with relatively high thresholds to distension, slow firing rates and that frequently contain 

calcitonin gene related peptide (CGRP) and TrpV1,91 which are likely to correspond to vascu-
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lar afferents; the other class had lower thresholds and were more excitable, and probably cor-

respond to rIGLEs.  

 

The morphology of the peripheral endings of vascular afferent fibres has been determined in 

detail. They give rise to fine branching peri-arterial axons that are preferentially associated 

with arterial branch points. Importantly, they are not restricted to mesenteric vessels, but con-

tinue into the gut wall, innervating the arteries and second order arterioles in the submucosa,92 

but not finer branches or capillaries. The same afferent unit can have transduction sites on 

both mesenteric and submucosal vessels92. These afferents detect mechanical stimuli from 

mechanotransduction sites on both extramural and intramural blood vessels. They also give 

rise to collaterals to myenteric and submucosal enteric ganglia, which largely lack mechano-

sensitivity42 but which provide excitatory synaptic connections onto enteric neurons.93–95 

They also give rise to axon branches in the mucosa and muscle layers but do not have collat-

erals in either the serosal membranes or mesenteric membranes. For this reason, the names 

‘serosal’ and ‘mesenteric’ are misleading. Given that their transduction sites are on, or close 

to blood vessels, the term ‘vascular’ ending seems more appropriate. Vascular afferents do not 

seem to be present in vagal pathways but, as mentioned above, are present in lumbosacral 

pathways to the distal bowel.46,91 

 

Vascular afferents: vasodilator role 

Vascular afferents are likely to have an important sensory role, but they also have potent ef-

ferent effects on the blood vessels that they appose. The major resistance vessels of the gut are 

submucous arterioles, although the mesenteric feed-arteries also contribute.96 Many arteries 

receive a prominent vasodilator input that can be stimulated from spinal ganglia.97 These spi-

nal sensory neurons are peptidergic, usually containing CGRP and substance P together,98 and 

their axons form a distinctive peri-arterial plexus. Electrical stimulation or capsaicin cause 
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hyperpolarization and dilatation of mesenteric vessels,99 mimicked by CGRP and blocked by 

a CGRP antagonist.100,101 Synaptic transmission from collaterals in enteric ganglia excites en-

teric vasodilator neurons, adding to local hyperaemia.102 Substance P (and neurokinin A) is 

also released onto blood vessels, where it increases vascular permeability and thereby causes 

plasma extravasation associated with neurogenic inflammation in many tissues throughout the 

body101a. Neurogenic inflammation also occurs in the gastrointestinal tract although not to the 

same extent as in the skin or other tissues.103,104 The efferent function of these nerves has a 

protective role by increasing blood flow when tissue integrity is challenged. Thus, back-

diffusion of gastric acid evokes a protective hyperaemia largely via activation of capsaicin-

activated, H+-sensitive TrpV1 ion channels.96 Activation of peptidergic afferents by localized 

distension evokes an axon reflex, leading to peptide release and vasodilation in upstream 

mesenteric vessels.105 When gut muscle contracts strongly, blood flow is significantly modi-

fied: the activation of sensory vasodilator mechanisms might therefore cause a compensatory 

vasodilation. It seems that activation of this vasodilator axon reflex occurs only during nox-

ious stimulation: there is no evidence for CGRP-mediated systemic vasodilation at rest.106 

 

Vascular afferents: activation by mediators 

There are potentially complex interactions between the sensory and efferent functions of pep-

tidergic thoracolumbar mechanoreceptor endings on mesenteric and submucosal blood ves-

sels. This situation is further complicated by the bewildering range of chemosensitivities of 

these cells. They are activated or modulated by a range of algogenic mediators released during 

tissue damage, including ATP, bradykinin, glutamate, chemicals from mast cells (including 

mast cell proteases), nerve growth factor, prostaglandins, histamine and 5-

hydroxytryptamine106a. They also have receptors for key inflammatory cytokines including 

IL-1β,107 IL-6108 and TNF.109 The excitability of these neurons is profoundly modulated dur-

ing experimental inflammation, particularly in the post-inflammatory period.110 Consistent 
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with this finding, visceromotor responses to colonic distension are exaggerated during and 

after inflammation.111,112  

 

TRP channels in vascular afferents 

In the last decade, great progress has been made in identifying molecular mechanisms under-

lying afferent plasticity; much of this research has been carried out on vascular afferent noci-

ceptors. In particular, progress has been made in revealing how inflammation and stress modi-

fy sensory neuronal activity. A number of TRP ion channels are worth specific mention, in 

particular TrpV1, TRPV4 and TRPA1. 

 

TrpV1 is a cation channel that is activated by heat (>43˚C), low pH and by anandamide. It is 

abundant in peptidergic thoracolumbar vascular afferents,113,114 and is detectable in the major-

ity of their perivascular, intramuscular, ganglionic and mucosal axons in the gut wall.115 

TrpV1 might be directly activated by the acidosis that accompanies frank tissue damage116 or 

by local increases in temperature during inflammation. The thermosensitivity of these chan-

nels might be supplemented by the heat activated calcium-dependent chloride channel, ANO-

1, which is co-expressed in some nociceptors.117 TrpV1 is also modulated by agents released 

during inflammation, including arachidonic acid metabolites, bradykinin, 5-

hydroxytryptamine, nerve growth factor, purines and prostaglandins. Its expression is upregu-

lated in nerve fibres in IBD118 and in IBS.119 TrpV1 mediates at least some of the sensitization 

of visceral afferents caused by experimental colitis,120 in part by increased expression in spi-

nal afferents.  

 

TRPV4 is abundant in thoracolumbar spinal afferents to the gut.121 This ion channel is gated 

by osmotic swelling, mechanical distortion, endogenous 5’,6’epoxyeicosatrienoic acid, anan-

damide and 2-AG (2-arachidonoylglycerol) and, in a partially desensitizing fashion, by tem-
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perature >27˚C.122 Mechanically-induced firing of vascular afferents is attenuated in TRPV4-

null mice and by a TRPV4 channel blocker.121 Conversely, a TRPV4 agonist causes hyper-

sensitivity to distension and enhanced afferent responses to distension.121,123 TRPV4 is exten-

sively co-localised with PAR2 (proteinase-activated receptor 2), which sensitizes thoracolum-

bar spinal afferents to the gut during neurogenic inflammation.124 Activation of PAR2, by 

proteases released by mast cell degranulation, can lead to behavioural hypersensitivity and 

increased afferent firing via sensitization of TRPV4.123,125 

 

TRPA1 is the third TRP channel known to have a key role in setting the sensitivity of vascu-

lar afferents. It might also mediate PAR2-evoked sensitization in the gut126 and/or bradykinin-

mediated hypersensitivity.127 TRPA1 is directly mechanosensitive in gastrointestinal afferents 

and interacts with TrpV1.127 It is opened by a wide variety of compounds, many of which 

might covalently modify its structure rather than acting at discrete receptor sites. These in-

clude pungent components of spices (such as mustard oil, wasabi, cinnamaldehyde, garlic, 

and menthol), irritant chemicals (including acrolein, pungent anaesthetics), hydrogen perox-

ide, nicotine,clotrimazole, dihydropyridines128 and the gaseous mediator, hydrogen 

sulphide.129  

 

Silent afferents: a subtype of vascular afferent? 

In many studies, afferent units that were previously silent and insensitive to mechanical 

stimuli become active and mechanosensitive when exposed to capsaicin or inflammatory me-

diators (sometimes delivered in combinations, known as ‘inflammatory soup’). In a systemat-

ic study, it was estimated that about one-quarter of thoracolumbar and lumbosacral spinal af-

ferents are mechanically insensitive in naive preparations.130 This estimation was based on 

recordings made from either pelvic nerves or splanchnic nerves while electrically stimulating 

axons peripherally. These numbers might be an overestimate, as paravertebral sympathetic 
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efferent axons131 might have been activated in these pathways by the same electrical stimuli. 

Nevertheless, zymosan treatment leads to a decrease in the proportion of mechanically insen-

sitive (‘silent’) afferents both acutely, and several weeks later81. Interestingly this effect coin-

cided with an increased proportion of mechanically sensitive ‘serosal’-type afferents.81 Other 

classes were variably affected: pelvic colorectal muscular–mucosal afferents were also sensi-

tized, but muscular afferents (which correspond to pelvic afferents with intraganglionic lami-

nar endings) were not affected.81,110,132  

 

The suggestion that serosal vascular afferents are a major source of silent afferents is perhaps 

not surprising. Vascular afferents show a wide range of mechanosensitivities and consistently 

are among the least mechanically sensitive afferents in the gut. It seems likely that ‘silent’ af-

ferents might comprise the extreme, insensitive end of the distribution of vascular afferents, 

rather than a distinct class. Like other vascular afferents, they are very prone to modulation by 

inflammatory mediators, both by acute actions and by long-term changes in gene 

expression,133 which convert them from a silent to a mechanically sensitive phenotype. 

 

Viscerofugal enteric primary afferents 

One other type of primary afferent fibre, which is not extrinsic in origin, needs to be included 

in this brief survey. Many enteric neurons are directly excited by mechanical and chemical 

stimuli; they activate local enteric motor, secretory and vasomotor reflexes. Enteric primary 

afferent neurons have been reviewed elsewhere134,135 and are generally accepted not to have 

any direct connections with the CNS. However, one particular class of enteric neuron has 

synaptic outputs that might enable them to contribute to conscious sensation. These are the 

enteric ‘viscerofugal’ neurons, which have cell bodies in myenteric ganglia and project out of 

the gut, to pre-vertebral ganglia.134 At least some of these neurons in the distal bowel project 

directly to the spinal cord.136–138 Viscerofugal neurons have been shown to be directly mecha-
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nosensitive139,140 but are also synaptically activated by enteric circuitry.140,141 Their axons pro-

ject in mesenteric nerves, pelvic nerves and possibly splanchnic nerves and contribute to rec-

orded action potential discharge in colonic nerves.140 

 

Extrinsic afferent pathways and sensation 

Distension and contraction are powerful activators of pain pathways that can be monitored 

behaviourally by pseudaffective and visceromotor reflexes.142 Colorectal distension has been 

widely studied. Lumbosacral afferents primarily mediate the visceromotor response to colo-

rectal distension in normal mice, as severing pelvic pathways abolishes the response, but le-

sioning splanchnic pathways has little effect.143 Lumbosacral dorsal rhizotomy abolishes vis-

ceromotor reflexes, but inflammation reinstates a thoracolumbar contribution,144 which indi-

cates that thoracolumbar vascular afferents can contribute to pain symptoms after inflammato-

ry challenge. However, further up the colon, the situation might be quite different. Distension 

>16 cm above the anal sphincter in humans evoked pain, but this pain did not occur after bi-

lateral sympathectomy. By contrast, sympathectomy did not abolish painful sensations evoked 

by distension within 16 cm of the sphincter.145 The same study suggested that balloon disten-

sion of the upper colon and small intestine, with pressures of 15–40 mmHg, also evoked 

graded pain, which was abolished after bilateral sympathectomy from T7 to L3.145 These re-

sults indicate that pain from the rectum is substantially mediated via pelvic pathways, while 

pain from more proximal regions of the gut is primarily mediated via thoracolumbar spinal 

afferents—the majority of which correspond to the vascular afferents. Evidence suggests that 

low-threshold, wide-dynamic range lumbosacral mechanoreceptors from the colorectum, 

which dominate pelvic nerve responses to rectal distension, are likely to be responsible for 

activation of pain pathways.146 These mechanoreceptors include rIGLES and rectal muscular-

mucosal endings. Interestingly, sensation evoked by slow ramp distension in the human rec-
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tum was reduced by luminal application of the local anaesthetic, lidocaine, which suggests a 

possible role for muscular–mucosal afferents with endings close to the mucosal surface.147 

 

Although pain from the gut is ubiquitous in response to high amplitude distension, other mo-

dalities of sensation are commonly experienced, particularly at the proximal and distal ends of 

the gastrointestinal tract. For example, humans can discriminate between solid, liquid and 

gaseous content in the distal rectum and anal canal,148 although the sensory receptors respon-

sible are not clear. There might be a ‘sampling reflex’ in which relaxation distally enables rec-

tal content to move into the anal canal where different materials are distinguished. It is possi-

ble that the muscular–mucosal receptors, with their extraordinary sensitivity to mucosal dis-

tortion, might have a role in this discrimination. Low levels of distension of the rectum acti-

vate rectal contractions and anal relaxations;48 largely via sacral parasympathetic pathways.19 

Rectal distension in humans evokes sensations of urge at low pressures, unpleasantness at 

high pressures and pain at still higher pressures.149 Pain and unpleasantness co-vary more 

closely than either sensation with urge. This finding suggests that urge might be mediated by 

different sensory pathways from either unpleasantness or pain.149 Consistent with this idea, 

studies in patients with spinal cord lesions suggest that painful rapid rectal distension might 

be preferentially detected by splanchnic pathways, whereas slow ramp distension activates 

pelvic pathways, with urge preceding discomfort.147  

 

The proximal gastrointestinal tract is also dually innervated via vagal and splanchnic path-

ways. Gastric distension gives rise to sensations of fullness and has a potent effect on food 

intake, via gastric mechanoreceptors rather than chemoreceptors.150 By contrast, satiety in-

duced by nutrient infusion into the small intestine primarily reflects chemical content and is 

probably mediated via hormonal signals and via vagal mucosal afferents, excited by enteroen-

docrine cells in the duodenal mucosa.150 Small intestinal nutrient signals modify sensation 
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evoked in humans by gastric distension, associated with effects on gastric motility,151 suggest-

ing complex central integration. It is well established that abdominal vagal afferents can con-

tribute significantly to nausea and vomiting. At least some of this contribution is mediated by 

mucosal afferents that are sensitive to 5-hydroxytryptamine, released by a variety of toxins 

from enterochromaffin cells.152,153 These same afferents might also be sensitive to nutrients,154 

including simple carbohydrates. 

 

Some doubt exists as to whether gastric distension is sensed by vagal tension receptors or by 

vagal length receptors. Studies in humans have shown that changes in gastric muscle tone 

evoked by glucagon or erythromycin do not markedly affect the sensation of fullness evoked 

by a distension of fixed volume155. This finding suggests that volume, rather than pressure or 

wall tension, is sensed by afferents that mediate fullness.155 It has been argued, on the basis of 

anatomical considerations, that there must be specialized volume receptors in the stomach that 

encode distension, largely independent of wall tension or pressure. However, to date, electro-

physiological studies have failed to record specific length-sensitive extrinsic afferents. Indeed, 

afferent endings in the fundus of the ferret that seemed to encode distension rather than pres-

sure, could also be activated by contraction, suggesting that they had a considerable tension-

sensitive response.27 It is possible that the receptors responsible for fullness during prolonged 

gastric distension are IGLEs, although a role for intramuscular arrays cannot be discounted. 

Consistent with this idea, maintained distension of strips of guinea pig corpus evoked in-

creased levels of firing by IGLEs that persisted for several minutes.25 IGLEs might not simply 

respond to wall tension, but rather a mixture of length and tension caused by distortion of the 

gut wall.22 

 

Conclusions 
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Extrinsic afferent innervation of the gut has been the subject of study for more than 60 years. 

Over this period, many types of primary afferent sensory neurons have been characterized, 

using a wide variety of features. Reconciling findings from different studies has often proved 

difficult, and little consensus has emerged about the classes of afferents that mediate sensation 

from the gut. Despite this problem, major advances have been made in understanding the mo-

lecular mechanisms involved in transduction and modulation of sensory neurons, with poten-

tial clinical significance for understanding, diagnosing and treating gastrointestinal disorders. 

Here, we have tried to draw together the rather disparate literature about the types of gut sen-

sory neurons, to provide a foundation for future molecular studies. Five basic types of extrin-

sic sensory ending in the gut, possibly supplemented by enteric viscerofugal neurons, might 

account for the full range of sensory information emanating from the mammalian gastrointes-

tinal tract. This framework might be useful for understanding which ion channels, receptors 

and second messenger pathways interact within specific sensory neurons to give rise to both 

normal and pathological sensation from the gut. 

 

 

Key points 

• The gut is innervated by several classes of extrinsic sensory neurons, which have dis-

tinct combinations of properties that make them sensitive to particular mechanical and 

chemical stimuli 

• Progress has been made in identifying the morphology of sensory endings in the gut 

wall, possibly providing a more robust means to classify sensory innervation 

• Five different morphological types of endings can be distinguished by their structure; 

these account for the great majority of sensory nerves to the gastrointestinal tract and 

seem to correspond to distinct major physiological classes 
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• The physiological properties of extrinsic afferent nerves innervating the gut are char-

acterized by variability and by plasticity, which can make it difficult to reliably distin-

guish the classes of sensory neurons that underlie gut sensation 
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Figure Legend 

 

Figure 1: Five morphological types of extrinsic sensory neurons to the gut. The five types of 

sensory endings in the gut wall are outlined, together with enteric viscerofugal neurons (for 

the sake of completeness). Transduction sites are shown as open circles; transmitter release 

sites are shown as open triangles. Vascular afferents are the most complex afferents, with both 

intramural and extramural perivascular axons, and collaterals in enteric ganglia, mucosa, 

muscularis externa and in prevertebral ganglia. Intraganglionic axons provide intraganglionic 

laminar endings, mostly in myenteric ganglia. Mucosal afferents innervate the subepithelial 

mucosa. Muscular-mucosal afferents have endings deep in the mucosa, close to the muscu-

laris mucosae, and intramuscular afferents have nerve endings within longitudinal and/or cir-

cular muscle layers.   Abbreviations: CM: circular muscle, LM: longitudinal muscle, MP: 

myenteric plexus 
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Table 1. Distribution of endings of extrinsic primary afferents between the three major anatomical 
pathways to the gut* 

 Enteric 
viscerofugal 

Vascular Intraganglionic 
laminar 

Mucosal Muscular 
mucosal 

Intra-
muscular 

Vagal + 0 +++ +++ +++ +++ 

Thoracolumbar +++ +++ 0 + 0 0 

Lumbosacral +++ +++ +++ +++ +++ +++ 

*Enteric viscerofugal neurons have been included, for the sake of completeness. Vagal pathways 
include neurons originating in paired nodose and jugular ganglia. Thoracolumbar pathways have 
cell bodies in thoracolumbar dorsal root ganglia and project via splanchnic nerves and mesenter-
ic/colonic/hypogastric nerves. Lumbosacral pathways have cell bodies in lumbosacral dorsal root 
ganglia and project via pelvic nerves and rectal nerves to the distal bowel. 0: absence of afferent 
type in pathway, + denotes moderate abundance; +++ denotes high abundance.  
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Review criteria 
Extensive use was made of Medline and Pubmed databases to supplement a general famili-
arity with the literature built up by tracking the published literature. Numerous searches 
were carried out using general terms: “sensory”, “afferent”, “gastric”, “stomach”, “esopha-
gus”, “ duodenum”, “ ileum”, “ intestine”, “colon”, “ rectum”, “ rectal”, “retrograde”, “ ante-
rograde”, “immunohistochemisty”, “immunocytochemistry”, “antibody” or ”antiserum” to-
gether with more specialized terms, for example “CGRP or calcitonin gene related peptide” 
etc. Papers were restricted to full text papers, published in English. In some cases refer-
ences were followed back from reference lists in papers.  
 
 
References 
 
 
1 Craig, AD. Interoception: The sense of the physiological condition of the body. 

Curr. Opin. Neurobiology 13, 500-505 (2003). 
2 Van Oudenhove, L, Coen, S-J & Aziz, Q. Functional brain imaging of 

gastrointestinal sensation in health and disease. World J. Gastroenterol. 13, 3438-
3445 (2007). 

3 Jones, MP, Dilley, JB, Drossman, D & Crowell, MD. Brain-gut connections in 
functional GI disorders: anatomic and physiologic relationships. 
Neurogastroenterol. Motil. 18, 91-103 (2006). 

4 Melzack, R & Wall, PD. Pain mechanisms: a new theory. Science 150, 971-979 
(1965). 

5 Mayer, EA. Gut feelings: The emerging biology of gut-brain communication. Nat. 
Rev. Neurosci. 12, 453-466 (2011). 

6 Raybould, HE. Gut chemosensing: Interactions between gut endocrine cells and 
visceral afferents. Auton. Neurosci. 153, 41-46 (2010). 

7 Rindi, G, Leiter, AB, Kopin, AS, Bordi, C & Solcia, E. The "normal" endocrine cell of 
the gut: changing concepts and new evidences. Ann. N. Y. Acad. Sci. 1014, 1-12 
(2004). 

8 Collins, SM & Bercik, P. The relationship between intestinal microbiota and the 
central nervous system in normal gastrointestinal function and disease. 
Gastroenterology 136, 2003-2014 (2009). 

9 Forsythe, P, Sudo, N, Dinan, T, Taylor, VH & Bienenstock, J. Mood and gut feelings. 
Brain, Behav Immun. 24, 9-16 (2010). 

10 Keita, AV & Soderholm, JD. The intestinal barrier and its regulation by 
neuroimmune factors. Neurogastroenterol. Motil. 22, 718-733 (2010). 

11 Jiang, W et al. 'First-in-man': Characterising the mechanosensitivity of human 
colonic afferents. Gut 60, 281-282 (2011). 

12 Peiris, M et al. Human visceral afferent recordings: Preliminary report. Gut 60, 
204-208 (2011). 

13 Sirotin, BZ. Electrophysiological study of reception from certain internal organs 
in man. Bull. Exp. Biol. Med. 50, 873-877 (1961). 

14 Rinaman, L, Card, JP, Schwaber, JS & Miselis, RR. Ultrastructural demonstration of 
a gastric monosynaptic vagal circuit in the nucleus of the solitary tract in rat. J. 
Neurosci. 9, 1985-1996 (1989). 

15 Willis, A, Mihalevich, M, Neff, RA & Mendelowitz, D. Three types of postsynaptic 
glutamatergic receptors are activated in DMNX neurons upon stimulation of NTS. 
Am. J. Physiol. 271, R1614-1619 (1996). 

   26 



  

16 Zhang, X & Fogel, R. Involvement of glutamate in gastrointestinal vago-vagal 
reflexes initiated by gastrointestinal distention in the rat. Auton. Neurosci. 103, 
19-37 (2003). 

17 Dembowsky, K, Czachurski, J & Seller, H. An intracellular study of the synaptic 
input to sympathetic preganglionic neurones of the third thoracic segment of the 
cat. J. Auton. Nerv. Syst. 13, 201-244 (1985). 

18 Matthews, MR & Cuello, AC. Substance P-immunoreactive peripheral branches of 
sensory neurons innervate guinea pig sympathetic neurons. Proc. Natl Acad. Sci. 
USA 79, 1668-1672 (1982). 

19 De Groat, WC & Krier, J. The sacral parasympathetic reflex pathway regulating 
colonic motility and defaecation in the cat. J. Physiol. Lond. 276, 481-500 (1978). 

20 Iggo, A. Tension receptors in the stomach and the urinary bladder. J. Physiol. 128, 
593-607 (1955). 

21 Paintal, A. A study of gastric stretch receptors. Their role in the peripheral 
mechanism of satiation of hunger and thirst. J. Physiol. 126, 255-270 (1954). 

22 Brookes, SJH, Zagorodnyuk, VP & Costa, M. in Advances in vagal afferent 
neurobiology (eds B.J. Undem & D. Weinreich) (CRC Press, 2005). 

23 Tassicker, BC, Hennig, GW, Costa, M & Brookes, SJH. Rapid anterograde and 
retrograde tracing from mesenteric nerve trunks to the guinea-pig small intestine 
in vitro. Cell Tissue Res. 295, 437-452 (1999). 

24 Zagorodnyuk, VP & Brookes, SJ. Transduction sites of vagal mechanoreceptors in 
the guinea pig esophagus. J. Neurosci. 20, 6249-6255 (2000). 

25 Zagorodnyuk, VP, Chen, BN & Brookes, SJ. Intraganglionic laminar endings are 
mechano-transduction sites of vagal tension receptors in the guinea-pig stomach. 
J. Physiol. 534, 255-268 (2001). 

26 Zagorodnyuk, VP, Chen, BN, Costa, M & Brookes, SJ. Mechanotransduction by 
intraganglionic laminar endings of vagal tension receptors in the guinea-pig 
oesophagus. J. Physiol. 553, 575-587 (2003). 

27 Andrews, PL, Grundy, D & Scratcherd, T. Vagal afferent discharge from 
mechanoreceptors in different regions of the ferret stomach. J. Physiol. Lond. 298, 
513-524 (1980). 

28 Berthoud, HR, Patterson, LM, Neumann, F & Neuhuber, WL. Distribution and 
structure of vagal afferent intraganglionic laminar endings (IGLEs) in the rat 
gastrointestinal tract. Anat. Embryol. (Berl.) 195, 183-191 (1997). 

29 Fox, EA, Phillips, RJ, Martinson, FA, Baronowsky, EA & Powley, TL. Vagal afferent 
innervation of smooth muscle in the stomach and duodenum of the mouse: 
morphology and topography. J. Comp. Neurol. 428, 558-576 (2000). 

30 Berthoud, HR, Lynn, PA & Blackshaw, LA. Vagal and spinal mechanosensors in the 
rat stomach and colon have multiple receptive fields. Am. J. Physiol. Regul. Integr. 
Comp. Physiol. 280, R1371-1381 (2001). 

31 Zhong, F, Christianson, JA, Davis, BM & Bielefeldt, K. Dichotomizing axons in 
spinal and vagal afferents of the mouse stomach. Dig. Dis. Sci. 53, 194-203 (2008). 

32 Neuhuber, WL & Clerc, N. in The primary afferent neuron: A survey of recent 
morpho-functional aspects (eds W. Zenker & W.L. Neuhuber) 93-107 (Plenum, 
1990). 

33 Page, AJ, Martin, CM & Blackshaw, LA. Vagal mechanoreceptors and 
chemoreceptors in mouse stomach and esophagus. J. Neurophysiol. 87, 2095-
2103 (2002). 

34 Cook, SP & McCleskey, EW. Cell damage excites nociceptors through release of 
cytosolic ATP. Pain 95, 41-47 (2002). 

   27 



  

35 Cockayne, DA et al. Urinary bladder hyporeflexia and reduced pain-related 
behaviour in P2X3-deficient mice. Nature 407, 1011-1015 (2000). 

36 Wynn, G, Rong, W, Xiang, Z & Burnstock, G. Purinergic mechanisms contribute to 
mechanosensory transduction in the rat colon. Gastroenterology 125, 1398-1409 
(2003). 

37 Smid, SD, Young, RL, Cooper, NJ & Blackshaw, LA. GABA(B)R expressed on vagal 
afferent neurones inhibit gastric mechanosensitivity in ferret proximal stomach. 
Am. J. Physiol. Gastrointest. Liver Physiol. 281, G1494-1501 (2001). 

38 Page, AJ et al. Metabotropic glutamate receptors inhibit mechanosensitivity in 
vagal sensory neurons. Gastroenterology 128, 402-410 (2005). 

39 Slattery, JA, Page, AJ, Dorian, CL, Brierley, SM & Blackshaw, LA. Potentiation of 
mouse vagal afferent mechanosensitivity by ionotropic and metabotropic 
glutamate receptors. J. Physiol. 577, 295-306 (2006). 

40 Kentish, S et al. Diet-induced adaptation of vagal afferent function. J. Physiol. 590, 
209-221 (2012). 

41 Olsson, C, Costa, M & Brookes, SJ. Neurochemical characterization of extrinsic 
innervation of the guinea pig rectum. J. Comp. Neurol. 470, 357-371 (2004). 

42 Lynn, PA, Olsson, C, Zagorodnyuk, V, Costa, M & Brookes, SJ. Rectal 
intraganglionic laminar endings are transduction sites of extrinsic 
mechanoreceptors in the guinea pig rectum. Gastroenterology 125, 786-794 
(2003). 

43 Lynn, P, Zagorodnyuk, V, Hennig, G, Costa, M & Brookes, S. Mechanical activation 
of rectal intraganglionic laminar endings in the guinea pig distal gut. J. Physiol. 
564, 589-601 (2005). 

44 Janig, W & Koltzenburg, M. Receptive properties of sacral primary afferent 
neurons supplying the colon. J. Neurophysiol. 65, 1067-1077 (1991). 

45 Sengupta, JN & Gebhart, GF. Characterization of mechanosensitive pelvic nerve 
afferent fibers innervating the colon of the rat. J. Neurophysiol. 71, 2046-2060 
(1994). 

46 Brierley, SM, Jones, RC, 3rd, Gebhart, GF & Blackshaw, LA. Splanchnic and pelvic 
mechanosensory afferents signal different qualities of colonic stimuli in mice. 
Gastroenterology 127, 166-178 (2004). 

47 Yamanouchi, M et al. Integrative control of rectoanal reflex in guinea pigs through 
lumbar colonic nerves. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G148-156 
(2002). 

48 Denny-Brown, D & Robertson, E. An investigation of the nervous control of 
defaecation. Brain 58, 256-310 (1935). 

49 Clarke, GD & Davison, JS. Mucosal receptors in the gastric antrum and small 
intestine of the rat with afferent fibres in the cervical vagus. J. Physiol. Lond. 284, 
55-67 (1978). 

50 Leek, BF. Abdominal and pelvic visceral receptors. Br. Med. Bull. 33, 163-168 
(1977). 

51 Paintal, AS. Responses from mucosal mechanoreceptors in the small intestine of 
the cat. J. Physiol. 139, 353-368 (1957). 

52 Powley, TL & Phillips, RJ. Vagal intramuscular array afferents form complexes 
with interstitial cells of cajal in gastrointestinal smooth muscle: analogues of 
muscle spindle organs? Neuroscience 186, 188-200 (2011). 

53 Steinert, RE & Beglinger, C. Nutrient sensing in the gut: interactions between 
chemosensory cells, visceral afferents and the secretion of satiation peptides. 
Physiol. Behav. 105, 62-70 (2011). 

   28 



  

54 Gershon, MD & Tack, J. The serotonin signaling system: from basic understanding 
to drug development for functional GI disorders. Gastroenterology 132, 397-414 
(2007). 

55 Gibbs, J, Young, RC & Smith, GP. Cholecystokinin elicits satiety in rats with open 
gastric fistulas. Nature 245, 323-325 (1973). 

56 Hewson, G, Leighton, GE, Hill, RG & Hughes, J. The cholecystokinin receptor 
antagonist L364,718 increases food intake in the rat by attenuation of the action 
of endogenous cholecystokinin. Br. J. Pharmacol. 93, 79-84 (1988). 

57 Smith, GP, Jerome, C, Cushin, BJ, Eterno, R & Simansky, KJ. Abdominal vagotomy 
blocks the satiety effect of cholecystokinin in the rat. Science 213, 1036-1037 
(1981). 

58 Blackshaw, LA & Grundy, D. Effects of cholecystokinin (CCK-8) on two classes of 
gastroduodenal vagal afferent fibre. J. Auton. Nerv. Syst. 31, 191-201 (1990). 

59 Eastwood, C, Maubach, K, Kirkup, AJ & Grundy, D. The role of endogenous 
cholecystokinin in the sensory transduction of luminal nutrient signals in the rat 
jejunum. Neurosci. Lett. 254, 145-148 (1998). 

60 Lal, S, Kirkup, AJ, Brunsden, AM, Thompson, DG & Grundy, D. Vagal afferent 
responses to fatty acids of different chain length in the rat. Am. J.Physiol. 
Gastrointest. Liver Physiol. 281, G907-915 (2001). 

61 Abbott, CR et al. The inhibitory effects of peripheral administration of peptide 
YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation 
of the vagal-brainstem-hypothalamic pathway. Brain Res. 1044, 127-131 (2005). 

62 Koda, S et al. The role of the vagal nerve in peripheral PYY3-36-induced feeding 
reduction in rats. Endocrinology 146, 2369-2375 (2005). 

63 Batterham, RL et al. Gut hormone PYY(3-36) physiologically inhibits food 
intake. Nature 418, 650-654 (2002). 

64 Li, Y, Wu, X, Yao, H & Owyang, C. Secretin activates vagal primary afferent 
neurons in the rat: evidence from electrophysiological and immunohistochemical 
studies. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G745-752 (2005). 

65 Kreis, ME, Jiang, W, Kirkup, AJ & Grundy, D. Cosensitivity of vagal mucosal 
afferents to histamine and 5-HT in the rat jejunum. Am. J. Physiol. Gastrointest. 
Liver Physiol. 283, G612-617 (2002). 

66 Hillsley, K & Grundy, D. Serotonin and cholecystokinin activate different 
populations of rat mesenteric vagal afferents. Neurosci. Lett. 255, 63-66 (1998). 

67 Grundy, D, Blackshaw, LA & Hillsley, K. Role of 5-hydroxytryptamine in 
gastrointestinal chemosensitivity. Dig. Dis. Sci. 39, 44S-47S (1994). 

68 Hicks, GA et al. Excitation of rat colonic afferent fibres by 5-HT(3) receptors. J. 
Physiol. 544, 861-869 (2002). 

69 Page, AJ & Blackshaw, LA. An in vitro study of the properties of vagal afferent 
fibres innervating the ferret oesophagus and stomach. J. Physiol. Lond. 512, 907-
916 (1998). 

70 Berthoud, HR & Powley, TL. Vagal afferent innervation of the rat fundic stomach: 
morphological characterization of the gastric tension receptor. J. Comp. Neurol. 
319, 261-276 (1992). 

71 Wang, FB & Powley, TL. Topographic inventories of vagal afferents in 
gastrointestinal muscle. J. Comp. Neurol. 421, 302-324 (2000). 

72 Yu, S, Undem, BJ & Kollarik, M. Vagal afferent nerves with nociceptive properties 
in guinea-pig oesophagus. J. Physiol. 563, 831-842 (2005). 

   29 



  

73 Hayakawa, T, Kuwahara-Otani, S, Maeda, S, Tanaka, K & Seki, M. Projections of 
calcitonin gene-related peptide immunoreactive neurons in the vagal ganglia of 
the rat. J. Chem. Neuroanat. 41, 55-62 (2011). 

74 Spencer, NJ et al. Identification of capsaicin-sensitive rectal mechanoreceptors 
activated by rectal distension in mice. Neuroscience 153, 518-534 (2008). 

75 Spencer, NJ et al. Identification of functional intramuscular rectal 
mechanoreceptors in aganglionic rectal smooth muscle from piebald lethal mice. 
Am. J. Physiol. Gastrointest. Liver Physiol. 294, G855-G867 (2008). 

76 Lynn, PA & Brookes, SJH. Pudendal afferent innervation of the guinea pig external 
anal sphincter. Neurogastroenterol. Motil. 23, 871-e343 (2011). 

77 Dutsch, M et al. Vagal and spinal afferent innervation of the rat esophagus: a 
combined retrograde tracing and immunocytochemical study with special 
emphasis on calcium-binding proteins. J. Comp. Neurol. 398, 289-307 (1998). 

78 Sang, Q & Young, HM. The origin and development of the vagal and spinal 
innervation of the external muscle of the mouse esophagus. Brain Res. 809, 253-
268 (1998). 

79 Bessou, P & Perl, ER. A movement receptor of the small intestine. J. Physiol. 182, 
404-426 (1966). 

80 Feng, B, Brumovsky, PR & Gebhart, GF. Differential roles of stretch-sensitive 
pelvic nerve afferents innervating mouse distal colon and rectum. Am. J. Physiol. 
Gastrointest. Liver Physiol. 298, G402-409 (2010). 

81 Feng, B et al. Long-term sensitization of mechanosensitive and -insensitive 
afferents in mice with persistent colorectal hypersensitivity. Am. J. Physiol. 
Gastrointest. Liver Physiol. 302, G676-683 (2012). 

82 Blumberg, H, Haupt, P, Janig, W & Kohler, W. Encoding of visceral noxious stimuli 
in the discharge patterns of visceral afferent fibres from the colon. Pflugers Arch. 
398, 33-40 (1983). 

83 Cottrell, DF. Mechanoreceptors of the rabbit duodenum. Q. J. Exp. Physiol. 69, 677-
684 (1984). 

84 Morrison, JF. Splanchnic slowly adapting mechanoreceptors with punctate 
receptive fields in the mesentery and gastrointestinal tract of the cat. J. Physiol. 
233, 349-361 (1973). 

85 Floyd, K & Morrison, JF. Splanchnic mechanoreceptors in the dog. Q. J. Exp. 
Physiol. Cogn. Med. Sci. 59, 361-366 (1974). 

86 Haupt, P, Janig, W & Kohler, W. Response pattern of visceral afferent fibres, 
supplying the colon, upon chemical and mechanical stimuli. Pflugers Arch. 398, 
41-47 (1983). 

87 Longhurst, JC & Dittman, LE. Hypoxia, bradykinin, and prostaglandins stimulate 
ischemically sensitive visceral afferents. Am. J. Physiol. 253, H556-567 (1987). 

88 Longhurst, JC, Kaufman, MP, Ordway, GA & Musch, TI. Effects of bradykinin and 
capsaicin on endings of afferent fibers from abdominal visceral organs. Am. J. 
Physiol. 247, R552-559 (1984). 

89 Brunsden, AM, Jacob, S, Bardhan, KD & Grundy, D. Mesenteric afferent nerves are 
sensitive to vascular perfusion in a novel preparation of rat ileum in vitro. Am. J. 
Physiol. Gastrointest. Liver Physiol. 283, G656-665 (2002). 

90 Brunsden, AM, Brookes, SJ, Bardhan, KD & Grundy, D. Mechanisms underlying 
mechanosensitivity of mesenteric afferent fibers to vascular flow. Am. J. Physiol. 
Gastrointest. Liver Physiol. 293, G422-428 (2007). 

91 Malin, SA, Christianson, JA, Bielefeldt, K & Davis, BM. TPRV1 expression defines 
functionally distinct pelvic colon afferents. J. Neurosci. 29, 743-752 (2009). 

   30 



  

92 Song, X et al. Identification of medium/high-threshold extrinsic mechanosensitive 
afferent nerves to the gastrointestinal tract. Gastroenterology 137, 274-284 
(2009). 

93 Takaki, M & Nakayama, S. Effects of capsaicin on myenteric neurons of the guinea 
pig ileum. Neurosci. Lett. 105, 125-130 (1989). 

94 Takaki, M & Nakayama, S. Electrical behavior of myenteric neurons induced by 
mesenteric nerve stimulation in the guinea pig ileum. Acta Med. Okayama 44, 
257-261 (1990). 

95 Bartho, L, Holzer, P, Lembeck, F & Szolcsanyi, J. Evidence that the contractile 
response of the guinea-pig ileum to capsaicin is due to release of substance P. J 
Physiol. Lond. 332, 157-167 (1982). 

96 Holzer, P. in Physiology of the gastrointestinal tract Vol. 1 (ed L.R. Johnson) Ch. 29, 
817-845 (Elsevier, 2012). 

97 Bayliss, WM. On the origin from the spinal cord of the vaso-dilator fibres of the 
hind-limb, and on the nature of these fibres. J. Physiol. 26, 173-209 (1901). 

98 Gibbins, IL et al. Co-localization of calcitonin gene-related peptide-like 
immunoreactivity with substance P in cutaneous, vascular and visceral sensory 
neurons of guinea pigs. Neurosci. Lett. 57, 125-130 (1985). 

99 Meehan, AG, Hottenstein, OD & Kreulen, DL. Capsaicin-sensitive nerves mediate 
inhibitory junction potentials and dilatation in guinea-pig mesenteric artery. J. 
Physiol. 443, 161-174 (1991). 

100 Uddman, R, Edvinsson, L, Ekblad, E, Hakanson, R & Sundler, F. Calcitonin gene-
related peptide (CGRP): perivascular distribution and vasodilatory effects. Regul. 
Pept. 15, 1-23 (1986). 

101 Kawasaki, H, Takasaki, K, Saito, A & Goto, K. Calcitonin gene-related peptide acts 
as a novel vasodilator neurotransmitter in mesenteric resistance vessels of the 
rat. Nature 335, 164-167 (1988). 

101a Holzer, P.  Neurogenic vasodilatation and plasma leakage in the skin. Gen. 
Pharmacol. 30(1):5-11, 1998 

102 Vanner, S & Surprenant, A. Neural reflexes controlling intestinal microcirculation. 
Am. J. Physiol. 271, G223-230 (1996). 

103 Figini, M et al. Substance P and bradykinin stimulate plasma extravasation in the 
mouse gastrointestinal tract and pancreas. Am. J. Physiol. 272, G785-793 (1997). 

104 Sann, H, Dux, M, Schemann, M & Jancso, G. Neurogenic inflammation in the 
gastrointestinal tract of the rat. Neurosci. Lett. 219, 147-150 (1996). 

105 Meehan, AG & Kreulen, DL. A capsaicin-sensitive inhibitory reflex from the colon 
to mesenteric arteries in the guinea-pig. J. Physiol. Lond. 448, 153-159 (1992). 

106 Petersen, KA et al. The CGRP-antagonist, BIBN4096BS does not affect cerebral or 
systemic haemodynamics in healthy volunteers. Cephalalgia 25, 139-147 (2005). 

106A Blackshaw, L.A. & Gebhart, G.F.  The pharmacology of gastrointestinal nociceptive 
pathways. Curr. Opin. Pharmacol. 2(6):642-9, 2002 

107 Binshtok, AM et al. Nociceptors are interleukin-1beta sensors. J. Neurosci. 28, 
14062-14073 (2008). 

108 Andratsch, M et al. A key role for gp130 expressed on peripheral sensory nerves 
in pathological pain. J. Neurosci. 29, 13473-13483 (2009). 

109 Li, Y, Ji, A, Weihe, E & Schafer, MKH. Cell-specific expression and 
lipopolysaccharide-induced regulation of tumor necrosis factor alpha (TNFalpha) 
and TNF receptors in rat dorsal root ganglion. J. Neurosci. 24, 9623-9631 (2004). 

   31 



  

110 Hughes, PA et al. Post-inflammatory colonic afferent sensitisation: different 
subtypes, different pathways and different time courses. Gut 58, 1333-1341 
(2009). 

111 Sengupta, JN, Snider, A, Su, X & Gebhart, GF. Effects of kappa opioids in the 
inflamed rat colon. Pain 79, 175-185 (1999). 

112 Gschossmann, JM et al. Long-term effects of transient chemically induced colitis 
on the visceromotor response to mechanical colorectal distension. Dig. Dis. Sci. 
49, 96-101 (2004). 

113 Brierley, SM et al. Differential chemosensory function and receptor expression of 
splanchnic and pelvic colonic afferents in mice. J. Physiol. 567, 267-281 (2005). 

114 Robinson, DR, McNaughton, PA, Evans, ML & Hicks, GA. Characterization of the 
primary spinal afferent innervation of the mouse colon using retrograde 
labelling. Neurogastroenterol. Motil. 16, 113-124 (2004). 

115 Ward, SM, Bayguinov, J, Won, KJ, Grundy, D & Berthoud, HR. Distribution of the 
vanilloid receptor (VR1) in the gastrointestinal tract. J. Comp. Neurol. 465, 121-
135 (2003). 

116 Woo, YC, Park, SS, Subieta, AR & Brennan, TJ. Changes in tissue pH and 
temperature after incision indicate acidosis may contribute to postoperative 
pain. Anesthesiology 101, 468-475 (2004). 

117 Cho, H et al. The calcium-activated chloride channel anoctamin-1 acts as a heat 
sensor in nociceptive neurons. Nat. Neurosci. 15, 1015-1021 (2012). 

118 Yiangou, Y et al. Vanilloid receptor 1 immunoreactivity in inflamed human bowel. 
Lancet 357, 1338-1339 (2001). 

119 Akbar, A et al. Increased capsaicin receptor TRPV1-expressing sensory fibres in 
irritable bowel syndrome and their correlation with abdominal pain. Gut 57, 923-
929 (2008). 

120 De Schepper, HU et al. TRPV1 receptors on unmyelinated C-fibres mediate colitis-
induced sensitization of pelvic afferent nerve fibres in rats. J. Physiol. 586, 5247-
5258 (2008). 

121 Brierley, SM et al. Selective role for TRPV4 ion channels in visceral sensory 
pathways. Gastroenterology 134, 2059-2069 (2008). 

122 Nilius, B, Vriens, J, Prenen, J, Droogmans, G & Voets, T. TRPV4 calcium entry 
channel: a paradigm for gating diversity. Am. J. Physiol. Cell Physiol. 286, C195-
205 (2004). 

123 Cenac, N et al. Transient receptor potential vanilloid-4 has a major role in visceral 
hypersensitivity symptoms. Gastroenterology 135, 937-946 (2008). 

124 Steinhoff, M et al. Agonists of proteinase-activated receptor 2 induce 
inflammation by a neurogenic mechanism. Nat. Med. 6, 151-158 (2000). 

125 Sipe, WEB et al. Transient receptor potential vanilloid 4 mediates protease 
activated receptor 2-induced sensitization of colonic afferent nerves and visceral 
hyperalgesia. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G1288-1298 (2008). 

126 Cattaruzza, F et al. Transient receptor potential ankyrin-1 has a major role in 
mediating visceral pain in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 298, 
G81-91 (2010). 

127 Brierley, SM et al. The ion channel TRPA1 is required for normal 
mechanosensation and is modulated by algesic stimuli. Gastroenterology 137, 
2084-2095 (2009). 

128 Nilius, B, Prenen, J & Owsianik, G. Irritating channels: The case of TRPA1. J. 
Physiol. 589, 1543-1549 (2011). 

   32 



  

129 Miyamoto, R, Otsuguro, K-I & Ito, S. Time- and concentration-dependent 
activation of TRPA1 by hydrogen sulfide in rat drg neurons. Neurosci. Lett. 499, 
137-142 (2011). 

130 Feng, B & Gebhart, GF. Characterization of silent afferents in the pelvic and 
splanchnic innervations of the mouse colorectum. Am. J. Physiol. Gastrointest. 
Liver Physiol. 300, G170-180 (2011). 

131 Olsson, C et al. Comparison of extrinsic efferent innervation of guinea pig distal 
colon and rectum. J. Comp. Neurol. 496, 787-801 (2006). 

132 Lynn, PA, Chen, BN, Zagorodnyuk, VP, Costa, M & Brookes, SJH. TNBS-induced 
inflammation modulates the function of one class of low-threshold rectal 
mechanoreceptors in the guinea pig. Am. J. Physiol. Gastrointest. Liver Physiol. 
295, G862-871 (2008). 

133 Beyak, MJ. Visceral afferents—determinants and modulation of excitability. 
Auton. Neurosci. 153, 69-78 (2010). 

134 Furness, JB. Novel gut afferents: Intrinsic afferent neurons and intestinofugal 
neurons. Auton. Neurosci. 125, 81-85 (2006). 

135 Blackshaw, LA, Brookes, SJ, Grundy, D & Schemann, M. Sensory transmission in 
the gastrointestinal tract. Neurogastroenterol. Motil. 19, 1-19 (2007). 

136 Doerffler-Melly, J & Neuhuber, WL. Rectospinal neurons: Evidence for a direct 
projection from the enteric to the central nervous system in the rat. Neurosci. 
Lett. 92, 121-125 (1988). 

137 Neuhuber, WL et al. Rectospinal neurons: cell bodies, pathways, 
immunocytochemistry and ultrastructure. Neuroscience 56, 367-378 (1993). 

138 Suckow, SK & Caudle, RM. Identification and immunohistochemical 
characterization of colospinal afferent neurons in the rat. Neuroscience 153, 803-
813 (2008). 

139 Hibberd, TJ, Zagorodnyuk, VP, Spencer, NJ & Brookes, SJH. Viscerofugal neurons 
recorded from guinea-pig colonic nerves after organ culture. Neurogastroenterol. 
Motil. 24, 1041–e548 (2012). 

140 Hibberd, TJ, Zagorodnyuk, VP, Spencer, NJ & Brookes, SJH. Identification and 
mechanosensitivity of viscerofugal neurons. Neuroscience 225, 118-129 (2012). 

141 Sharkey, KA, Lomax, AE, Bertrand, PP & Furness, JB. Electrophysiology, shape, 
and chemistry of neurons that project from guinea pig colon to inferior 
mesenteric ganglia. Gastroenterology 115, 909-918 (1998). 

142 Ness, TJ & Gebhart, GF. Visceral pain: a review of experimental studies. Pain 41, 
167-234 (1990). 

143 Kyloh, M, Nicholas, S, Zagorodnyuk, VP, Brookes, SJH & Spencer, NJ. Identification 
of the visceral pain pathway activated by noxious colorectal distension in mice. 
Front. Neurosci. 22, 16(11-17) (2011). 

144 Traub, RJ. Evidence for thoracolumbar spinal cord processing of inflammatory, 
but not acute colonic pain. Neuroreport 11, 2113-2116 (2000). 

145 Ray, BS & Neill, CL. Abdominal visceral sensation in man. Ann. Surg. 126, 709-724 
(1947). 

146 Zagorodnyuk, VP et al. Loss of visceral pain following colorectal distension in an 
endothelin-3 deficient mouse model of hirschsprung's disease. J. Physiol. 589, 
1691-1706 (2011). 

147 Lembo, T et al. Evidence for the hypersensitivity of lumbar splanchnic afferents in 
irritable bowel syndrome. Gastroenterology 107, 1686-1696 (1994). 

148 Rao, SSC. Pathophysiology of adult fecal incontinence. Gastroenterology 126, S14-
22 (2004). 

   33 



  

149 Kwan, CL, Mikula, K, Diamant, NE & Davis, KD. The relationship between rectal 
pain, unpleasantness, and urge to defecate in normal subjects. Pain 97, 53-63 
(2002). 

150 Powley, TL & Phillips, RJ. Gastric satiation is volumetric, intestinal satiation is 
nutritive. Physiol. Behav. 82, 69-74 (2004). 

151 Feinle, C, Grundy, D & Read, NW. Effects of duodenal nutrients on sensory and 
motor responses of the human stomach to distension. Am. J. Physiol. 273, G721-
726 (1997). 

152 Andrews, PLR & Horn, CC. Signals for nausea and emesis: implications for models 
of upper gastrointestinal diseases. Auton. Neurosci. 125, 100-115 (2006). 

153 Sanger, GJ & Andrews, PLR. Treatment of nausea and vomiting: gaps in our 
knowledge. Auton. Neurosci. 129, 3-16 (2006). 

154 Zhu, JX, Zhu, XY, Owyang, C & Li, Y. Intestinal serotonin acts as a paracrine 
substance to mediate vagal signal transmission evoked by luminal factors in the 
rat. J. Physiol. 530, 431-442 (2001). 

155 Carmagnola, S, Cantu, P & Penagini, R. Mechanoreceptors of the proximal stomach 
and perception of gastric distension. Am. J. Gastroenterol. 100, 1704-1710 (2005). 

 

   34 


	Manuscript coversheet (Nature).pdf
	ms Brookes Extrinsic primary.pdf

