92 research outputs found

    Genetic and hormonal control of vascular tissue proliferation

    Get PDF
    The plant vascular system develops from a handful of provascular initial cells in the early embryo into a whole range of different cell types in the mature plant. In order to account for such proliferation and to generate this kind of diversity, vascular tissue development relies on a large number of highly oriented cell divisions. Different hormonal and genetic pathways have been implicated in this process and several of these have been recently interconnected. Nevertheless, how such networks control the actual division plane orientation and how they interact with the generic cell cycle machinery to coordinate these divisions remains a major unanswered question

    Cytokinin : a developing story

    Get PDF
    In the past decade tremendous advances have been made in understanding the biosynthesis, perception, and signaling pathways of the plant hormone cytokinin. It also became clear that interfering with any of these steps greatly impacts all on stages of growth and development. This has recently spurted renewed effort to understand how cytokinin signaling affects developmental processes. As a result, new insights on the role of cytokinin signaling and the downstream targets during, for example, shoot apical meristem, flower, female gametophyte, stomata and vascular development are being unraveled. In this review we aim to give a comprehensive overview of recent findings on how cytokinin influences growth and development in plants, and highlight areas for future research

    Rice microtubule‐associated protein IQ67‐DOMAIN14 regulates rice grain shape by modulating microtubule cytoskeleton dynamics

    Get PDF
    Cortical microtubule (MT) arrays play a critical role in plant cell shape determination by defining the direction of cell expansion. As plants continuously adapt to ever‐changing environmental conditions, multiple environmental and developmental inputs need to be translated into changes of the MT cytoskeleton. Here, we identify and functionally characterize an auxin‐inducible and MT‐localized protein OsIQ67‐DOMAIN14 (OsIQD14), which is highly expressed in rice seed hull cells. We show that while deficiency of OsIQD14 results in short and wide seeds and increases overall yield, overexpression leads to narrow and long seeds, caused by changed MT alignment. We further show that OsIQD14‐mediated MT reordering is regulated by specifically affecting MT dynamics, and ectopic expression of OsIQD14 in Arabidopsis could change the cell shape both in pavement cells and hypocotyl cells. Additionally, OsIQD14 activity is tightly controlled by calmodulin proteins, providing an alternative way to modify the OsIQD14 activity. Our results indicate that OsIQD14 acts as a key factor in regulating MT rearrangements in rice hull cells and hence the grain shape, and allows effective local cell shape manipulation to improve the rice yield trait

    Fully automated compound screening in Arabidopsis thaliana seedlings

    Get PDF
    High-throughput small molecule screenings in model plants are of great value to identify compounds that interfere with plant developmental processes. In academic research, the plant Arabidopsis thaliana is the most commonly used model organism for this purpose. However, compared to plant cellular systems, A. thaliana plants are less amenable to develop high-throughput screening assays. In this chapter, we describe a screening procedure that is compatible with liquid handling systems and increases the throughput of compound screenings in A. thaliana seedlings

    Regulation of intercellular TARGET OF MONOPTEROS 7 protein transport in the Arabidopsis root

    Get PDF
    Intercellular communication coordinates hypophysis establishment in the Arabidopsis embryo. Previously, TARGET OF MONOPTEROS 7 (TMO7) was reported to be transported to the hypophysis, the founder cell of the root cap, and RNA suppression experiments implicated its function in embryonic root development. However, the protein properties and mechanisms mediating TMO7 protein transport, and the role the movement plays in development remained unclear. Here, we report that in the post-embryonic root, TMO7 and its close relatives are transported into the root cap through plasmodesmata in a sequence-dependent manner. We also show that nuclear residence is crucial for TMO7 transport, and postulate that modification, potentially phosphorylation, labels TMO7 for transport. Additionally, three novel CRISPR/Cas9-induced tmo7 alleles confirmed a role in hypophysis division, but suggest complex redundancies with close relatives in root formation. Finally, we demonstrate that TMO7 transport is biologically meaningful, as local expression partially restores hypophysis division in a plasmodesmal protein transport mutant. Our study identifies motifs and amino acids that are pivotal for TMO7 protein transport, and establishes the importance of TMO7 in hypophysis and root development

    Auxin and epigenetic regulation of SKP2B, an F-box that represses lateral root formation

    Get PDF
    In plants, lateral roots originate from pericycle founder cells that are specified at regular intervals along the main root. Here, we show that Arabidopsis (Arabidopsis thaliana) SKP2B (for S-Phase Kinase-Associated Protein2B), an F-box protein, negatively regulates cell cycle and lateral root formation as it represses meristematic and founder cell divisions. According to its function, SKP2B is expressed in founder cells, lateral root primordia and the root apical meristem. We identified a novel motif in the SKP2B promoter that is required for its specific root expression and auxin-dependent induction in the pericycle cells. Next to a transcriptional control by auxin, SKP2B expression is regulated by histone H3.1/H3.3 deposition in a CAF-dependent manner. The SKP2B promoter and the 59 end of the transcribed region are enriched in H3.3, which is associated with active chromatin states, over H3.1. Furthermore, the SKP2B promoter is also regulated by H3 acetylation in an auxin-and IAA14-dependent manner, reinforcing the idea that epigenetics represents an important regulatory mechanism during lateral root formation

    Theoretical approaches to understanding root vascular patterning: a consensus between recent models

    Get PDF
    The root vascular tissues provide an excellent system for studying organ patterning, as the specification of these tissues signals a transition from radial symmetry to bisymmetric patterns. The patterning process is controlled by the combined action of hormonal signaling/transport pathways, transcription factors, and miRNA that operate through a series of non-linear pathways to drive pattern formation collectively. With the discovery of multiple components and feedback loops controlling patterning, it has become increasingly difficult to understand how these interactions act in unison to determine pattern formation in multicellular tissues. Three independent mathematical models of root vascular patterning have been formulated in the last few years, providing an excellent example of how theoretical approaches can complement experimental studies to provide new insights into complex systems. In many aspects these models support each other; however, each study also provides its own novel findings and unique viewpoints. Here we reconcile these models by identifying the commonalities and exploring the differences between them by testing how transferable findings are between models. New simulations herein support the hypothesis that an asymmetry in auxin input can direct the formation of vascular pattern. We show that the xylem axis can act as a sole source of cytokinin and specify the correct pattern, but also that broader patterns of cytokinin production are also able to pattern the root. By comparing the three modelling approaches, we gain further insight into vascular patterning and identify several key areas for experimental investigatio

    DOF2.1 Controls Cytokinin-Dependent Vascular Cell Proliferation Downstream of TMO5/LHW

    Get PDF
    To create a three-dimensional structure, plants rely on oriented cell divisions and cell elongation. Oriented cell divisions are specifically important in procambium cells of the root to establish the different vascular cell types [1, 2]. These divisions are in part controlled by the auxin-controlled TARGET OF MONOPTEROS5 (TMO5) and LONESOME HIGHWAY (LHW) transcription factor complex [3-7]. Loss-of-function of tmo5 or lhw clade members results in strongly reduced vascular cell file numbers, whereas ectopic expression of both TMO5 and LHW can ubiquitously induce periclinal and radial cell divisions in all cell types of the root meristem. TMO5 and LHW interact only in young xylem cells, where they promote expression of two direct target genes involved in the final step of cytokinin (CK) biosynthesis, LONELY GUY3 (LOG3) and LOG4 [8, 9] Therefore, CK was hypothesized to act as a mobile signal from the xylem to trigger divisions in the neighboring procambium cells [3, 6]. To unravel how TMO5/LHW-dependent cytokinin regulates cell proliferation, we analyzed the transcriptional responses upon simultaneous induction of both transcription factors. Using inferred network analysis, we identified AT2G28510/DOF2.1 as a cytokinin-dependent downstream target gene. We further showed that DOF2.1 controls specific procambium cell divisions without inducing other cytokinin-dependent effects such as the inhibition of vascular differentiation. In summary, our results suggest that DOF2.1 and its closest homologs control vascular cell proliferation, thus leading to radial expansion of the root.Peer reviewe

    Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions

    Get PDF
    Optimal plant growth is hampered by deficiency of the essential macronutrient phosphate in most soils. Plant roots can, however, increase their root hair density to efficiently forage the soil for this immobile nutrient. By generating and exploiting a high-resolution single-cell gene expression atlas of Arabidopsis roots, we show an enrichment of TARGET OF MONOPTEROS 5 / LONESOME HIGHWAY (TMO5/LHW) target gene responses in root hair cells. The TMO5/LHW heterodimer triggers biosynthesis of mobile cytokinin in vascular cells and increases root hair density during low phosphate conditions by modifying both the length and cell fate of epidermal cells. Moreover, root hair responses in phosphate deprived conditions are TMO5 and cytokinin dependent. In conclusion, cytokinin signaling links root hair responses in the epidermis to perception of phosphate depletion in vascular cells

    Diffusible repression of cytokinin signalling produces endodermal symmetry and passage cells.

    Get PDF
    In vascular plants, the root endodermis surrounds the central vasculature as a protective sheath that is analogous to the polarized epithelium in animals, and contains ring-shaped Casparian strips that restrict diffusion. After an initial lag phase, individual endodermal cells suberize in an apparently random fashion to produce 'patchy' suberization that eventually generates a zone of continuous suberin deposition. Casparian strips and suberin lamellae affect paracellular and transcellular transport, respectively. Most angiosperms maintain some isolated cells in an unsuberized state as so-called 'passage cells', which have previously been suggested to enable uptake across an otherwise-impermeable endodermal barrier. Here we demonstrate that these passage cells are late emanations of a meristematic patterning process that reads out the underlying non-radial symmetry of the vasculature. This process is mediated by the non-cell-autonomous repression of cytokinin signalling in the root meristem, and leads to distinct phloem- and xylem-pole-associated endodermal cells. The latter cells can resist abscisic acid-dependent suberization to produce passage cells. Our data further demonstrate that, during meristematic patterning, xylem-pole-associated endodermal cells can dynamically alter passage-cell numbers in response to nutrient status, and that passage cells express transporters and locally affect the expression of transporters in adjacent cortical cells
    corecore