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SUMMARY

To create a three-dimensional structure, plants rely
on oriented cell divisions and cell elongation.
Oriented cell divisions are specifically important
in procambium cells of the root to establish
the different vascular cell types [1, 2]. These
divisions are in part controlled by the auxin-
controlled TARGET OF MONOPTEROS5 (TMO5)
and LONESOME HIGHWAY (LHW) transcription
factor complex [3–7]. Loss-of-function of tmo5 or
lhw clade members results in strongly reduced
vascular cell file numbers, whereas ectopic expres-
sion of both TMO5 and LHW can ubiquitously
induce periclinal and radial cell divisions in all cell
types of the root meristem. TMO5 and LHW
interact only in young xylem cells, where they
promote expression of two direct target genes
involved in the final step of cytokinin (CK) biosyn-
thesis, LONELY GUY3 (LOG3) and LOG4 [8, 9]
Therefore, CK was hypothesized to act as a mobile
signal from the xylem to trigger divisions in the
neighboring procambium cells [3, 6]. To unravel
how TMO5/LHW-dependent cytokinin regulates
cell proliferation, we analyzed the transcriptional
responses upon simultaneous induction of both
transcription factors. Using inferred network
analysis, we identified AT2G28510/DOF2.1 as a
cytokinin-dependent downstream target gene. We
further showed that DOF2.1 controls specific
procambium cell divisions without inducing other
cytokinin-dependent effects such as the inhibition
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of vascular differentiation. In summary, our results
suggest that DOF2.1 and its closest homologs con-
trol vascular cell proliferation, thus leading to radial
expansion of the root.

RESULTS

Simultaneous Induction of TMO5/LHW Results in Cell
Proliferation
To dissect the transcriptional responses downstream of

TMO5/LHW, we generated a double dexamethasone (DEX)-

inducible line by fusing TMO5 and LHW to the gluco-

corticoid receptor (GR) tag and driving them from the strong

meristematic RPS5A promoter [10]. As expected, the number

of cell files (quantified as total number of cell files in radial

sections halfway between the quiescent center and the

elongation zone) in the root apical meristem was strongly

increased in the pRPS5A::TMO5:GR x pRPS5A::LHW:GR

(henceforth named double-GR or dGR) line compared to the

control line upon a 24 h induction (Figures 1A–1D). In our

experimental conditions, the dGR line resulted in much

stronger induction of periclinal and radial divisions (PRD,

Figure S1A) compared to the single TMO5-GR or LHW-GR

lines (Figures S1B and S1C). Although the constitutive

TMO5/LHW misexpression line [4] resulted in significantly

more divisions, the dGR line showed a very predictable in-

crease in the number of cell divisions (Figures S1B and

S1C). Intriguingly, the first PRD already occurred after 4 h of

DEX induction in the dGR line (Figures 1E–1H), while these

divisions were not observed in control plants. These results

suggest that all transcriptional changes required for PRD

already occurred before this time. Also, prolonged induction

of the dGR line resulted in cumulatively more PRD (Figures

1I and S1D).
ors. Published by Elsevier Ltd.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Identification of DOF2.1 as Transcriptional Hub
Downstream of TMO5/LHW
We next interrogated the genome-wide transcriptional re-

sponses upon TMO5/LHW induction in a high-density time

course experiment. After statistical analysis (fold change > 2,

q value < 0.05, see STAR Methods for details), 237 genes were

identified as significantly upregulated at one or more of the

time points (Table S1).We confirmed the regulation of a selection

of 25 genes by qRT-PCR analysis, which included known

TMO5/LHW target genes (Table S2). In line with previous data

[3, 6, 11, 12], the cytokinin (CK) biosynthesis genes, LOG3 and

LOG4, and other known targets, SACL3 and AT4G38650, were

quickly and strongly upregulated (Figure 1J and Table S2).

Intriguingly, following this first wave of direct target responses

at 0.5–1 h of induction, a second wave of gene expression

including A-type ARABIDOPSIS RESPONSE REGULATORS

(ARRs) [13, 14] was observed between 1–3 h of DEX treatment

(Figure 1J and Table S2). Given that CK biosynthesis through

LOG3 and LOG4 genes is activated at the 0.5–1 h time point,

induction of downstream CK signaling reported by A-type

ARR genes was expected, but not reported so far. Next, to

understand the spatial aspects of dGR induction, reporters

for CK biosynthesis (pLOG4::tdTomato) and CK signaling

(pTCSn::ntdTomato) were analyzed. LOG4 is expressed along

the xylem axis and in protoxylem associated pericycle and endo-

dermis, whereas TCSn is expressed in procambium, columella,

epidermis, and root cap cells (Figures 1K and 1M). Upon induc-

tion, LOG4 and TCSnwere ectopically expressed outside of their

normal domain in the root meristem (Figures 1L and 1N), con-

firming the activation of CK biosynthesis and CK signaling in all

cell types in the root meristem upon induction of dGR.

As our high-resolution time-course dataset allowed the identi-

fication of consecutive waves of gene expression upon TMO5/

LHW induction, we wanted to identify downstream transcrip-

tional hubs using network inference analysis [15]. To infer rela-

tionships and relative importance in the differentially expressed

genes, we utilized the GENIST regulatory network inference al-

gorithm [15]. The application of GENIST resulted in 6 individual

networks, corresponding to pairwise comparisons between the

0 h and all consecutive time points of the TMO5/LHW induction

time course in which 0.5 h and 1 h were combined into one set

(0 –0.5+1 h, 0–2h, 0–3 h, 0–4 h, 0–5 h, and 0–6 h) (see STAR

Methods for details). Both TMO5 and LHW were included in

the network to provide a starting point for the transcriptional

cascade. To illustrate the cascade of regulations through time,

the networks were color coded for each time point (Figure S2,

see Data S2 for more information). A first wave of gene expres-

sion (red), starting from TMO5, includes its direct target genes.
Figure 1. Simultaneous Induction of TMO5/LHW Results in Cell Prolife

(A–D) Confocal sections of untreated (A-B) and induced (C-D) dGR root meristem

(E–H) Longitudinal optical sections of cortical cells in dGR root meristems treated

mark induced PRD

(I) Percentage of dGR plants showing additional periclinal and/or radial cell divisio

these divisions were observed ectopically in longitudinal confocal sections.

(J) Relative expression levels of genes in transcriptome data upon induction of th

(K–N) Expression of pLOG4::tandemTomato and pTCSn::ntandemTomato in d

endodermis.

Scale bars in (A)–(H) and (K)–(N): 25mm. See also Figures S1 and S2, Tables S1 a
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This is followed by a second wave (green), including CK

response marked by ARRs. A third wave of gene expression

(blue) includes several major nodes each controlling a high num-

ber of genes and thus marking the point where a large transcrip-

tional change occurs. Notably, one of the most prominent nodes

corresponded toAT2G28510/DOF2.1; a DOF-type TF previously

suggested to be expressed in vascular tissues [16, 17]. To inves-

tigate this regulatory network in more detail and highlight signif-

icant regulations, we generated a subnetwork focusing only on

TMO5, ARR12, DOF2.1, and their predicted direct target genes

(see Data S2 for more information). First, this network correctly

predicts TMO5 to regulate all known target genes, including

SACL3 (represented as uORF34 and uORF35), BUD2, LOG3,

and LOG4, thus confirming earlier results [3, 6, 11, 12]. Second,

DOF2.1 is predicted to act downstream of ARR12, not TMO5,

suggesting that this gene might not be a direct target gene but

is likely regulated by CK signaling pathway, which is reported

to be activated by TMO5/LHW (see Data S2 for more

information).

DOF2.1 Expression Is Controlled by TMO5/LHW-
Dependent CK
To investigate the role of DOF2.1 as a downstream target of

TMO5/LHW, we first generated a transcriptional pDOF2.1::

GUS-GFP reporter line. During embryogenesis, DOF2.1 is first

expressed in the upper tier in heart stage (Figures 2A–2C) and

shows expression in the embryonic root at torpedo stage (Fig-

ure 2C). Post-embryonically, DOF2.1 shows weak expression

in the aerial tissues and high expression throughout the root (Fig-

ures S3A and S3B). Specifically, in the root apical meristem,

DOF2.1 is strongly expressed in xylem pole pericycle cells, in

specific neighboring procambium cells, and in the flanking endo-

dermal cells (Figures 2D and 2E), suggesting that the bilateral

symmetry of the root might extend beyond the central vascular

cylinder [18]. Given that some DOF-type TFs have been reported

to be mobile [19], we next investigated if the 31.8 kDa DOF2.1

proteinmight be amobile factor. Protein accumulation of a trans-

lational pDOF2.1::DOF2.1:YFP fusion recapitulated the expres-

sion pattern of the transcriptional reporter line (Figures 2F and

2G), suggesting that DOF2.1 is not moving outside of its domain

of expression. We next examined DOF2.1 expression upon

TMO5/LHW induction and observed that DOF2.1 expression

extended outside its normal domain and into the ground tissue

cells neighboring the phloem poles (Figures 2H and 2I). Notably,

no expression of DOF2.1, both prior and upon induction

of TMO5/LHW, was observed in xylem, centrally located

procambium or the phloem lineage cells. However, the RPS5A

promoter is expressed in this zone (Figure 2J), and CK signaling
ration

s. Lines in A and C represent radial cross-sections of B and D, respectively.

with 10mMdexamethasone (DEX) for the indicated amount of time. Arrowheads

ns (PRD) in time. Plants were scored to have additional PRD if one or more of

e dGR line.

GR after mock treatment and after 24h DEX treatment. Asterisks indicate

nd S2, and Data S1 and S2.
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Figure 2. DOF2.1 Expression in Xylem-Pole-Associated Cells

(A–C) Expression of pDOF2.1::GFP-GUS during embryogenesis. Arrows indicate expression in the embryonic root.

(D–I) Optical sections of the primary root meristems of pDOF2.1::GUS-GFP (D and E), pDOF2.1::DOF2.1:YFP (F andG) and pDOF2.1::GFP-GUS in dGR upon 24h

DEX treatment (H and I).

(J) Optical cross section of pRPS5A::nGFP-GUS in the root meristem.

(K and L) TCSn::ntdTomato-DR5revV2::n3GFP expression in dGR after 24h DEX treatment. The line in (K) represents the optical cross section shown in (L).

(M and N) pDOF2.1::GUS-GFP expression in Col-0 and tmo5 tmo5like1 double mutant background.

(O) Relative expression levels of DOF2.1 upon treatment with 10 mM Benzyl Adenine (BA) for 0, 1, 2, 6, and 24 h as determined by qRT-PCR analysis.

(P) Relative expression levels of DOF2.1 upon treatment with 10 mM BA in Col-0 and wol mutant backgrounds.

In all qRT-PCR experiments, data are represented as mean ± SEM and asterisks indicate significance (**p < 0.001; n.s.: not significant) as determined by two-

sided t-tests. In all confocal images, asterisks indicate endodermis and crosses indicate xylem cells; scale bars, 25 mm. See also Figures S1, S2, S3 and Data S1.

Current Biology 29, 520–529, February 4, 2019 523



proto/metaxylem 

proto/metaphloem

companion cells 

outer procambium (OPC)

inner procambium (IPC)

pericycle 

dof2.1-2 tmo6-1 dof6-2
triple mutant

*
*

*

Col-0 dof2.1-1 single mutant

*

*
**

*
*

*
* * *

**
* *

***

* *
*

*
*

PFRre::6OMTpSUNEVre::6FODp PFRre::6OMTpSUNEVre::6FODp

2500

0

2500

0

2500

0

2500

0

G I* *
*

*
**

*

* xxxxx
* x

* *
*

*
*

*

*

x
x
x
x

xxxxx

xx
x
xx

xx xx

A B C

ED

F G H I

J

L

K M

Col-
0

do
f2.

1-1

do
f2.

1-2

tm
o6

-4 
do

f6-
1

tm
o6

-1 
do

f6-
2

do
f2.

1-2
 tm

o6
-1 

do
f6-

2
Col-

0
Col-

0

N
um

be
r o

f O
P

C
 c

el
ls

6

4

8

10

12

29 28 37 27 61 54 38 54

**
n.s.

a

b

b c

2

1

0

R
el

at
iv

e
E

xp
re

ss
io

n 
Le

ve
ls

Col-0 dof2.1-1

DOF2.1 DOF6 TMO6

3

1

0

R
el

at
iv

e
E

xp
re

ss
io

n 
Le

ve
ls

DOF6

2

TMO6

*

*
* *

0 1 2 6 24
CK treatment (h)

2

1

0

R
el

at
iv

e
E

xp
re

ss
io

n 
Le

ve
ls

-BA
Col-0 wol

+

DOF6 TMO6

- + -
Col-0 wol

+ - +

**

*

n.s.

n.s.
Total

Vascular
cells
n.s.

90

80

70

60

50

40

30

Col-
0

Col-
0

do
f2.

1-1
Col-

0

trip
le 

muta
nt

Col-
0

trip
le 

muta
nt

N
um

be
r o

f C
el

l F
ile

s

do
f2.

1-1

8 9 8 9 35 32 35 32

Vascular
cells
****

Total

Figure 3. DOF2.1 Controls Specific Procambium Divisions

(A, B, and E) Optical sections of root meristems of Col-0, dof2.1-1 and dof2.1-2 tmo6-1 dof6-2, respectively.

(C) Quantification of the cell file number of dof2.1 (left panel) and dof2.1-2 tmo6-1 dof6-2 (triple mutant) (right panel) with respective controls.

(D) Relative expression levels of DOF2.1, DOF6 and TMO6 in Col-0 and dof2.1-1 as determined by qRT-PCR analysis.

(F–I) pDOF6::erVENUS and pTMO6::erRFP expression in root apical meristems. Location of cross sections in G and I are indicates with lines in F and H

respectively.

(J) Relative expression levels of DOF6 and TMO6 upon treatment with 10 mM BA for 0, 1, 2, 6 and 24h as determined by qRT-PCR analysis.

(K) Relative expression levels of DOF6 and TMO6 upon 2 h treatment with 10 mM BA in Col-0 and wol mutant backgrounds.

(L) Schematic overview of different cell types in the vascular bundle, indicating OPC and IPC cells.

(M) Quantification of OPC cell numbers in the mutant backgrounds indicated with the respective controls.

(legend continued on next page)
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(but not auxin signaling) is activated in these cells by TMO5/LHW

[3, 6] as visualized by a newly generated dual color, single

locus auxin/CK-signaling reporter line (pTCSn::ntdTomato -

pDR5revV2::n3GFP) (Figures 2K and 2L). These results suggest

an active suppression of DOF2.1 expression in the center of the

root vasculature. To provide additional evidence that DOF2.1

acts downstream of TMO5/LHW, we first analyzed its relative

expression levels in lhw single and tmo5 tmo5-like1 double

mutant backgrounds by qRT-PCR and found that these were

reduced (Figure S3F). Because these mutants have a reduced

vascular bundle with only one xylem pole and DOF2.1 is mostly

expressed in this area, it could well be that the observed result is

due to the altered anatomy of these mutants. Hence, we intro-

duced the pDOF2.1::GUS-GFP reporter line in the tmo5 tmo5-

like1 double mutant background to observe changes in the

tissue specific expression levels. Expression level was reduced

in this mutant backgrounds supporting that DOF2.1 expression

depends on functional TMO5/LHW (Figures 2M and 2N).

Next, given that DOF2.1 is induced later than LOG4 upon

TMO5/LHW induction (3-4h for DOF2.1 compared to 0.5-1h for

LOG4, see Table S1-2); that the DOF2.1 expression pattern is

very similar to that of LOG3 and LOG4 [3] and that our network

analysis predicts DOF2.1 to act downstream of ARR12 (Table

S2), we questioned if DOF2.1 could act downstream of the

TMO5/LHW-dependent CK biosynthesis. Indeed, DOF2.1 tran-

script levels were quickly induced in root meristems by exoge-

nous CK treatments in a qRT-PCR experiment (Figure 2O) and

in seedlings [20, 21]; but this induction was abolished in a

wooden leg (wol) mutant background (Figure 2P). These results

suggest that DOF2.1 is transcriptionally controlled by CK. A

CK-dependent regulation of DOF2.1 expression levels was

further supported by several recent reports showing direct

binding of the well-known B-type ARRs executors of CK

signaling ARR1, ARR10, and ARR12 to the DOF2.1 promoter

region [21, 22]. Thus, although we cannot exclude additional

CK-independent regulation of DOF2.1 at the moment, collec-

tively, these results suggest that DOF2.1 acts downstream of

the TMO5/LHW-dependent CK biosynthesis.

DOF2.1 and Its Close Homologs Control Vascular Cell
Proliferation
As the inferred network analysis predicts that DOF2.1 would act

as a major downstream transcriptional hub, we next questioned

whether this CK-inducible DOF-type TF is indeed involved in

controlling vascular cell proliferation. Given that a single

dof2.1 loss-of-function did not result in obvious phenotypes

(Figures 3A–3C) and the possible redundancy in the large

DOF-type TF family, we quantified the relative expression levels

of the two closest homologs, namely TMO6 and DOF6 (Fig-

ure S3E), in the dof2.1 line. The relative expression levels of

the latter were upregulated (Figure 3D), hinting toward compen-

satory regulation. Hence, we generated a triple mutant of

DOF2.1, DOF6, and TMO6 to overcome the redundancy within
In all qRT-PCR experiments and cell number quantifications, data are represented

not significant) as determined by two-sided t-tests; small case letters inM indicate

hoc Tukey HSD testing and sample numbers are indicated above the x axis. In a

cells; scale bars, 25 mm. See also Figure S3 and S4 and Data S1.
this subclade of the DOF transcription factor family using the

CRISPR/Cas9 system (Figure S4). Using confocal cross sec-

tions to quantify the number of cell files in the root meristem,

the dof2.1-2 tmo6-1 dof6-2 triple mutant showed a significant

reduction in the total number of cell files and in the number of

vascular cell files when compared to Col-0 (Figures 3C and

3E), suggesting that these closely related DOF-type TFs act in

a redundant manner to control vascular proliferation. To further

examine the redundancy of these factors, we analyzed the

expression patterns of pTMO6 and pDOF6 and found that

they are only partly overlapping but mostly distinct from the

DOF2.1 expression domain. DOF6 shows sieve element spe-

cific expression, and the TMO6 reporter line is more broadly

expressed in phloem-associated procambium cells (Figures

3F–3I). Intriguingly, TMO6 and DOF6 are also CK inducible (Fig-

ure 3J) in a wild-type, but not a wol, background (Figure 3K) and

are mildly regulated in the transcriptome data-set (Figure S3J).

To investigate the potential that these factors regulate specific

divisions in the procambium based on their expression do-

mains, we quantified the number of procambium cells in sin-

gle-, double-, and triple-mutant combinations using optical

cross sections. Additionally, we quantified both procambium

cells associated with the protoxylem pole next to the pericycle

(where DOF2.1 is mostly expressed: outer procambium cells -

OPC) as well as those associated with the phloem pole toward

the inside of the vascular bundle (showing no DOF2.1 expres-

sion: inner procambium cells - IPC) (Figure 3L). The number

of OPC cell files was significantly reduced in dof2.1-1 (Fig-

ure 3M). Although a second dof2.1-2 allele did not show a

reduction by itself, it did significantly enhance the effect of

the tmo6-1 dof6-2 double mutant, suggesting that both alleles

are functional. On the contrary, neither of the dof2.1 alleles

had a significant effect on the number of IPC cells (Figure S3J),

while multiple dof6 tmo6 double mutant combinations signifi-

cantly reduced IPC numbers (Figure S3J). Thus, these results

suggest that DOF2.1 specifically controls the number of OPC

divisions, while TMO6 and DOF6 show the strongest effect to-

ward the IPC cell numbers. Intriguingly, the dof2.1-2 tmo6-1

dof6-2 triple mutant also showed a mild reduction in the num-

ber of vascular cell files in mature embryos (Figure S3H), sug-

gesting that these DOF-type TF might act from embryogenesis

onward. Taken together, multiple DOF-type TFs control cell

divisions in specific sets of procambium cells during early

vascular development.

Next, to investigate whether DOF2.1 is sufficient to induce

PRD, we generated an inducible pRPS5A::DOF2.1:GR misex-

pression line. Upon induction, this line showed an increased

number of cell files for each cell type in the root meristem

when compared to Col-0 (Figures 4A–4D). To gain insights into

the temporal dynamics, we next analyzed this induction of

PRD in a time series experiment. Similar to what we observed af-

ter TMO5/LHW induction (Figures 1E–1H), pRPS5A::DOF2.1:GR

showed the first radial divisions after only 6 h DEX induction
asmean ± SEM and asterisks indicate significance (**p < 0.001; *p < 0.05; n.s.:

significantly different groups as determined using a one-way ANOVAwith post

ll confocal images, asterisks indicate endodermis and crosses indicate xylem
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Figure 4. DOF2.1 Is Sufficient to Trigger PRD

(A–D) Optical sections of Col-0 and pRPS5A::DOF2.1. Lines in A and C indicate position of cross sections in B and D respectively.

(E–G) Longitudinal sections of the epidermis in pRPS5A::DOF2.1:GR after DEX induction for the indicated time.

(H–J) DIC images of the differentiated vasculature of Col-0, dGR and pRPS5A::DOF2.1:GR in five-day-old seedlings.

(K) Quantification of the cell file number in lhw and tmo5 tmo5like1 mutant backgrounds harboring the pRPS5A::DOF2.1:GR rescue construct with (DEX) and

without (MS) treatment with 10mM DEX.

In all cell number quantifications, asterisks indicate significance (**p < 0.001) as determined by two-sided t-tests and sample numbers are indicated above

the x axis. In all confocal images, asterisks indicate endodermis; scale bars, (A)–(D) 25 mm, (E)–(G) 10 mm. See also Figure S3 and Data S1.
(Figures 4E–4G and S3I). Although a similar effect was observed

upon inducing TMO5/LHW or DOF2.1, the former involves the

activation of CK biosynthesis. As such, the effects of constitutive

TMO5/LHW overexpression are not limited to induction of PRD

but also include other CK-related phenotypes such as inhibition

of protoxylem cell differentiation [3, 6]. Following the logic that

DOF2.1 acts downstream of CK signaling, plants with elevated

DOF2.1 levels exhibit normally differentiated protoxylem cells

(Figures 4H–4J), suggesting that DOF2.1 specifically controls

vascular proliferation without causing other pleiotropic CK-

related effects. Nevertheless, likely due to divisions of the young

xylem cells, constitutive misexpression of DOF2.1 occasionally

showed the formation of additional protoxylem cell files with

normal differentiation (Figures S3C and S3D). Next, we intro-

duced the pRPS5A::DOF2.1:GR line into the tmo5 tmo5-like1

double and lhw single mutants [4, 23]. Induction of DOF2.1 led

to an increase in the total number of cell files of the root meristem

in both tmo5 tmo5-like1 double and lhw single mutant back-

grounds (Figure 4K). Thus, these results suggest that DOF2.1

acts as a transcriptional hub downstream of TMO5/LHW and
526 Current Biology 29, 520–529, February 4, 2019
is both required and sufficient to controlling vascular cell

proliferation.

DISCUSSION

Although over 200 genes were identified as being transcription-

ally upregulated upon simultaneous induction of TMO5 and

LHW, only a few were suggested to act as major transcriptional

hubs in the inferred network analysis. We focused our attention

to one of these, DOF2.1, previously reported to be expressed

in vascular tissues [17]. We showed that DOF2.1 acts down-

stream of the TMO5/LHW-dependent cytokinin response and,

together with its closest homologs, controls vascular prolifera-

tion. Several other DOF-type transcription factors have been re-

ported to be expressed in vascular tissues [17, 19], suggesting a

more prominent role for this family of transcription factors in

regulating vascular development. For example, DOF5.6/HCA2

was reported to be involved in controlling divisions in the inter-

fascicular cambium although no phenotypes were observed in

root tissues [24]. Given that the observed reduction in cell file



number is weaker in the triple dof2.1-2 tmo6-1 dof6-2 mutant

compared to the reduction observed in higher order mutants of

the tmo5 of lhw subclades [4], it is likely that more DOF family

members are involved in controlling this process. However,

DOF2.1 is the only DOF-type transcription factor we clearly iden-

tified as TMO5/LHW target, suggesting that other members of

this large transcription factor family are likely to be under control

of different signals or might act during different stages of

development.

Here, we showed that at least three DOF-type transcription

factors DOF2.1, TMO6, and DOF6 control specific subsets of

procambium cell divisions leading to vascular proliferation in

the root meristem, with DOF2.1 specifically controlling OPC divi-

sions, while TMO6 and DOF6 have the strongest effect on IPC

cell numbers. This differential response suggests that the pro-

cambium is not a homogeneous pool of cells. Indeed, distinct

zones might exist along the longitudinal and radial axis of pro-

cambial tissue, showing differential properties in cell division po-

tential and thus also regulatory mechanisms. In this aspect, it

would be interesting to investigate the contribution of these

cell populations to secondary growth when procambium cells

are reactivated.

DOF2.1 is specifically expressed in cells surrounding the xy-

lem poles but remains absent from the central region of the

vascular bundle evenwhen ectopically expressed in this domain.

This observation suggests that DOF2.1 expression levels might

be actively repressed in this zone. Intriguingly, CLASS III

HOMEODOMAIN LEUCINE ZIPPER (HD-ZIPIII) transcription

factors are expressed in this central region and have been shown

to act as negative regulators of cell proliferation [25]. Besides the

fact that several DOF factors have been identified as binding to

the promoter regions of HD-ZIPIII genes [26], it would be inter-

esting to investigate if these factors might at the same time act

as negative regulators of DOF-type TF expression.
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M.G., Möller, B.K., Weijers, D., Lohmann, J.U., Williams, C., Lorenzo, O.,

and Sozzani, R. (2017). Predicting gene regulatory networks by combining

spatial and temporal gene expression data in Arabidopsis root stem cells.

Proc. Natl. Acad. Sci. USA 114, E7632–E7640.

16. Yanagisawa, S. (2002). The Dof family of plant transcription factors.

Trends Plant Sci. 7, 555–560.

17. Gardiner, J., Sherr, I., and Scarpella, E. (2010). Expression of DOF genes

identifies early stages of vascular development in Arabidopsis leaves. Int.

J. Dev. Biol. 54, 1389–1396.

18. Andersen, T.G., Naseer, S., Ursache, R., Wybouw, B., Smet, W., De Rybel,

B., Vermeer, J.E.M., and Geldner, N. (2018). Diffusible repression of cyto-

kinin signalling produces endodermal symmetry and passage cells. Nature

555, 529–533.

19. LeHir, R., andBellini, C. (2013). The plant-specific dof transcription factors

family: new players involved in vascular system development and func-

tioning in Arabidopsis. Front. Plant Sci. 4, 164.

20. Bhargava, A., Clabaugh, I., To, J.P., Maxwell, B.B., Chiang, Y.H., Schaller,

G.E., Loraine, A., and Kieber, J.J. (2013). Identification of cytokinin-

responsive genes using microarray meta-analysis and RNA-Seq in

Arabidopsis. Plant Physiol. 162, 272–294.

21. Zubo, Y.O., Blakley, I.C., Yamburenko, M.V., Worthen, J.M., Street, I.H.,

Franco-Zorrilla, J.M., Zhang, W., Hill, K., Raines, T., Solano, R., et al.

(2017). Cytokinin induces genome-wide binding of the type-B response

regulator ARR10 to regulate growth and development in Arabidopsis.

Proc. Natl. Acad. Sci. USA 114, E5995–E6004.

22. Xie, M.T., Chen, H.Y., Huang, L., O’Neil, R.C., Shokhirev, M.N., and Ecker,

J.R. (2018). A B-ARR-mediated cytokinin transcriptional network directs

hormone cross-regulation and shoot development. Nat. Commun. 9,

1604.

23. Ohashi-Ito, K., and Bergmann, D.C. (2007). Regulation of the Arabidopsis

root vascular initial population by LONESOME HIGHWAY. Development

134, 2959–2968.

24. Guo, Y., Qin, G., Gu, H., and Qu, L.J. (2009). Dof5.6/HCA2, a Dof

transcription factor gene, regulates interfascicular cambium formation

and vascular tissue development in Arabidopsis. Plant Cell 21, 3518–

3534.
528 Current Biology 29, 520–529, February 4, 2019
25. Carlsbecker, A., Lee, J.Y., Roberts, C.J., Dettmer, J., Lehesranta, S.,

Zhou, J., Lindgren, O., Moreno-Risueno, M.A., Vat�en, A., Thitamadee,

S., et al. (2010). Cell signalling by microRNA165/6 directs gene dose-

dependent root cell fate. Nature 465, 316–321.

26. Brady, S.M., Zhang, L., Megraw, M., Martinez, N.J., Jiang, E., Yi, C.S.,

Liu, W., Zeng, A., Taylor-Teeples, M., Kim, D., et al. (2011). A stele-en-

riched gene regulatory network in the Arabidopsis root. Mol. Syst. Biol.

7, 459.

27. Kleinboelting, N., Huep, G., Kloetgen, A., Viehoever, P., and Weisshaar,

B. (2012). GABI-Kat SimpleSearch: new features of the Arabidopsis

thaliana T-DNA mutant database. Nucleic Acids Res. 40, D1211–

D1215.

28. M€ahönen, A.P., Bonke, M., Kauppinen, L., Riikonen, M., Benfey, P.N., and

Helariutta, Y. (2000). A novel two-component hybrid molecule regulates

vascular morphogenesis of the Arabidopsis root. Genes Dev. 14, 2938–

2943.

29. Houbaert, A., Zhang, C., Tiwari, M., Wang, K., de Marcos Serrano, A.,

Savatin, D.V., Urs, M.J., Zhiponova, M.K., Gudesblat, G.E.,

Vanhoutte, I., et al. (2018). POLAR-guided signalling complex as-

sembly and localization drive asymmetric cell division. Nature 563,

574–578.

30. Liao, C.Y., Smet, W., Brunoud, G., Yoshida, S., Vernoux, T., and Weijers,

D. (2015). Reporters for sensitive and quantitative measurement of auxin

response. Nat. Methods 12, 207–210, 2, 210.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Agrobacterium tumefaciens C58 PMP90 N/A N/A

Escherichia coli DH5a Thermo-Fisher Cat# 18265017

Chemicals, Peptides, and Recombinant Proteins

5-bromo-4-chloro-3-indolyl b-D-

glucopyranoside-sodium salt(X-Glc)

X-Gluc Direct N/A

6-Benzylaminopurine Duchefa Biochemie Cat# B0904

ATP New England Biolabs Cat# P0765

BbsI New England Biolabs Cat# R3539

BsaI New England Biolabs Cat# R0535

Calcofluor White Sigma-Aldrich Cat# 18909

Carbenicillin Duchefa Biochemie Cat# C0109

Dexamethasone Sigma-Aldrich Cat# D4902

Dimethyl sulfoxide Sigma-Aldrich Cat# 472301

Dimethylformamide (DMF) Sigma-Aldrich Cat# D4092

Glycerol Sigma-Aldrich Cat# G6279

Kanamycin Duchefa Biochemie Cat# K0126

Lactic acid Arcos Organics Cat# 189870010

MES Duchefa Biochemie Cat# M01503

MS-salt Duchefa Biochemie Cat# M0221

Paraformaldehyde Sigma-Aldrich Cat# 158127

Potassium Ferricyanide (K3Fe(CN)6) Sigma-Aldrich Cat# 702587

Potassium Ferrocyanide (K4Fe(CN)6) Sigma-Aldrich Cat# P9837

Propidium Iodide Sigma-Aldrich Cat# P4170

Q5 High-Fidelity DNA polymerase New England Biolabs Cat# M0491

Rifampicin Duchefa Biochemie Cat# R0146

SCRI Renaissance Stain 2200 Renaissance Chemicals N/A

Silwet Lehle Seeds Cat# VIS-30

Sodium deoxycholate Sigma-Aldrich Cat# 30970

Sodium metabisulphite Merck Cat# 106528

Spectinomycin Duchefa Biochemie Cat# S0188

T4-DNA Ligase New England Biolabs Cat# M0202

Triton X-100 Merck Cat# 11869

Urea USB Cat# 75826

Xylitol Sigma-Aldrich Cat# X3375

Critical Commercial Assays

GeneJET Plasmid Miniprep Kit Thermo-Fisher Cat# K0503

iScript cDNASynthesis Kit Bio-Rad Cat# 1708890

LightCycler 480 SYBR Green I Master Roche Diagnositics Cat# 50-720-3180

MultiSite Gateway� Pro Plus Thermo-Fisher Cat# 12537100

NEB Golden Gate Assembly Kit New England Biolabs Cat# E1601

RNeasy Plus Mini Kit QIAGEN Cat# 74136

Deposited Data

Transcriptomics datafiles Gene Expression Omnibus GEO: GSE116858

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Arabidopsis: Col-0 Nottingham Arabidopsis Stock Centre N/A

Arabidopsis: dof2.1-1 MPI for Plant Breeding Research;

Cologne, Germany [27]

GK-668G12

Arabidopsis: dof2.1-2 This paper N/A

Arabidopsis: dof2.1-2 tmo6-1 dof6-2 This paper N/A

Arabidopsis: lhw [4] N/A

Arabidopsis: pDOF2.1::DOF2.1:sYFP This paper N/A

Arabidopsis: pDOF2.1::GFP/GUS This paper N/A

Arabidopsis: pDOF6::erVENUS This paper N/A

Arabidopsis: pLOG4::tdTomato This paper N/A

Arabidopsis: pRPS5A::DOF2.1 This paper N/A

Arabidopsis: pRPS5A::DOF2.1-GR This paper N/A

Arabidopsis: pRPS5A::LHW:GR This paper N/A

Arabidopsis: pRPS5A::nGFP-GUS This paper N/A

Arabidopsis: pRPS5A::TMO5:GR [4] N/A

Arabidopsis: pRPS5A::TMO5:GR x

pRPS5A::LHW:GR

This paper N/A

Arabidopsis: pTCSn::ntdTomato -

pDR5revV2::n3GFP

This paper N/A

Arabidopsis: pTMO6::erRFP This paper N/A

Arabidopsis: tmo5 tmo5-like1 [4] N/A

Arabidopsis: tmo6-1 dof6-2 This paper N/A

Arabidopsis: tmo6-4 dof6-1 This paper N/A

Arabidopsis: wol [28] N/A

Arabidopsis: dof6-1 Nottingham Arabidopsis Stock Centre WiscsDsLox351c08

Oligonucleotides

See table S1 N/A N/A

Recombinant DNA

pBGWFS7 VIB-Ugent Center For Plant Systems

Biology

https://gateway.psb.ugent.be/

pBGWFS7 pDOF2.1::GFP/GUS This paper N/A

pDOF2.1::DOF2.1:sYFP This paper N/A

pDONR221 Thermo-Fisher N/A

pDONRP2RP3 Thermo-Fisher N/A

pDONRP4P1R Thermo-Fisher N/A

pDONRP4-P1R pRPS5A This paper N/A

pFASTRK_AtCas9_AG [29] N/A

pGG-A-ATU6PTA-B [29] N/A

pGG-B-ATU6PTA-C [29] N/A

pGG-C-ATU6PTA-D [29] N/A

pGG-D-ATU6PTA-E [29] N/A

pGG-D-ATU6PTA-E [29] N/A

pGIIM/LIC_SwaI-ntdTomato - pDR5revV2-

n3GFP

[30] N/A

pHm34GW VIB- UGent Center For Plant Systems

Biology

https://gateway.psb.ugent.be/

pHm34GW pDOF6::erVENUS This paper N/A

pHm34GW pTMO6::erRFP This paper N/A
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pHm42GW VIB-UGent Center For Plant Systems

Biology

https://gateway.psb.ugent.be/

pHm42GW pRPS5A::DOF2.1 This paper N/A

pHm43GW VIB-UGENT Center For Plant Systems

Biology

https://gateway.psb.ugent.be/

pHm43GW pRPS5A::DOF2.1-GR This paper N/A

pMK7S-NFm14GW,0 pRPS5A VIB- UGent Center For Plant Systems

Biology

https://gateway.psb.ugent.be/

pRPS5A::LHW:GR This paper N/A

pRPS5A::nGFP-GUS This paper N/A

pTCSn::ntdTomato [31] N/A

pTCSn::ntdTomato - pDR5revV2::n3GFP This paper N/A

Software and Algorithms

BoxPlotR N/A http://shiny.chemgrid.org/boxplotr/;

RRID:SCR_015629

CRISPR-P [32] http://crispr.hzau.edu.cn/CRISPR/

Cytoscape N/A https://cytoscape.org; RRID:SCR_003032

Microsoft Excel Microsoft RRID:SCR_016137

GENIST [15] https://github.com/madeluis/GENIST/

commits/master

ImageJ N/A https://imagej.nih.gov/ij/;

RRID:SCR_003070

Leica Application Suite X Leica Microsystems https://www.leica-microsystems.com;

RRID:SCR_013673

qBASE+ Biogazelle https://www.qbaseplus.com/;

RRID:SCR_003370

Other

Leica SP2 confocal microscope Leica Microsystems N/A

Leica SP8 confocal microscope Leica Microsystems N/A

LightCycler 480 Roche Life Sciences N/A

Olympus BX53 Olympus Lifesciences N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by Bert De Rybel (beryb@psb.

vib-ugent.be).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Arabidopsis thaliana (L.) Heynh. background lines Columbia-0 (Col-0), were used for experimentation, with mutants and transgenic

lines in these backgrounds as detailed in the Key Resources Table. Arabidopsis seedlings were cultivated at 22�C under continuous

light conditions.

METHOD DETAILS

Plant material and growth conditions
All seeds were surface sterilized, sown on solid ½MS plates without sucrose, and stratified for 24h at 4�C two days before they were

grown at 22�C in continuous light conditions. Ten day old seedlings were transferred to soil and grown in green house conditions.

Dexamethasone (DEX) treatment was performed by either germinating seeds on 10mMDEX-supplementedmediumor by transferring

plants from ½MS to 10mMDEX supplemented medium and continuing growth for the indicated time. Benzyl Adenine (BA) treatment
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was performed by transferring plants from ½ MS to 10mM BA supplemented medium and continuing growth for the indicated time.

Both BA and DEX were dissolved in dimethyl sulfoxide. The dof2.1-1 T-DNAmutant used (GK-668G12) was generated in the context

of the GABI-Kat program and provided by Bernd Weisshaar (MPI for Plant Breeding Research; Cologne, Germany) [27]. The Arabi-

dopsis thaliana (L.) Heynh. Col-0 ecotype served as wild-type control in all experiments. The AGI identifiers for the genes used in this

study were as follows:DOF2.1:AT2G28510, TMO6:AT5G60200,DOF6:AT3G45610, TMO5:AT3G25710, LHW:AT2G27230, LOG3:

AT2G37210, LOG4: AT3G53450, ARR1: AT3G16857, ARR10: AT4G31920, ARR12: AT2G25180, SACL3: AT1G29950, ACL5:

AT5G19530.

Cloning and plant transformation
The pRPS5A::TMO5:GR x pRPS5A::LHW:GR or dGR line was generated by first fusing the LHW coding sequence to the mammalian

glucocorticoid receptor (GR) and driving this from the strong meristematic RPS5A promoter [10] using LIC cloning [33, 34].

This pRPS5A::LHW:GR line was next crossed into the existing pRPS5A::TMO5:GR line [4] to obtain the dGR line. The pTCSn::

ntdTomato - pDR5revV2::n3GFP [30, 31] construct was generated by using PCR to generate the TCSn promoter fragment with

appropriate LIC adapters. This was inserted into the pGIIM/LIC_SwaI-ntdTomato - pDR5revV2-n3GFP destination vector [30] using

the LIC cloning system. Other vectors were generated using Gateway Technology (Thermo-Fisher). pRPS5A::DOF2.1 was generated

by cloning the DOF2.1 genomic sequence in the pDONR221 entry vector and subsequently recombining it with the pRPS5A

pDONRP4P1R in the pHm42GW destination vector. pRPS5A::DOF2.1-GR was generated by cloning DOF2.1 genomic sequence

without stop in the pDONR221 entry vector and subsequently recombining it with the pRPS5A pDONRP4P1R andGR pDONRP2RP3

in a pHm43GW destination vector. The DOF2.1 promoter was obtained by amplifying the 3711bp upstream region of the transcrip-

tional start and cloning this into the pDONRP41R entry vector. pDOF2.1::GFP/GUS was generated by cloning the DOF2.1 promoter

region in pBGWFS7 destination vector usingGateway cloning. The TMO6 and DOF transcriptional fusionswere generated by cloning

the promoter regions into the pDONRP41R entry vector and combining these with erRFP and erVENUS respectively into the

pHm34GW destination vector. pDOF2.1::DOF2.1:sYFP was obtained by cloning the pDOF2.1, DOF2.1 genomic sequence minus

stop, and sYFP entry clones in the pHm43GW destination vector using Gateway cloning. pRPS5A::nGFP-GUS was generated by

amplifying the pRPS5A promoter sequence [10] and cloning this into the pDONRP4P1R and subsequently cloning this into the

pMK7S-NFm14GW,0 destination vector. All constructs were verified by Sanger sequencing and were transformed into Col-0 using

simplified floral dipping. All primer sequences used for cloning and sequencing can be found in Data S1.

CRISPR/CAS9 mutant generation
Two guide RNAs (gRNAs) were designed per gene using the CRISPR-P tool [32]. Cloning of gRNA vectors was performed essentially

as previously described [29]. Briefly, gRNA oligos were appended with the corresponding overlaps (FW: 50-ATTG REV: 50-AAAC) to
enable annealed-oligo cloning. Primers used for cloning and sequencing can be found in Data S1. Oligos were annealed and ligated

into six Golden Gate gRNA entry modules using standard DNA ligation and sequenced verified. The gRNA entry plasmids were

cloned into the pFASTRK_AtCas9_AG destination vector (https://gateway.psb.ugent.be) using Golden Gate assembly. Expression

vectors were sequenced to verify successful insertion of the gRNAs. Positive expression vectors were transformed into Agrobacte-

rium tumefaciens C58 PMP90. Plants were transformed with Agrobacterium cultures using floral dip. Transformed events were

selected based on red seed fluorescence and sown on soil. Knockout mutations in the target genes were confirmed in the T1 gen-

eration by PCR amplification and Sanger sequencing followed by TIDE analysis [35]. T2 seeds lacking red seed fluorescence (Cas9

null segregants) were sown on soil and plants again screened for the desired editing events. Cas9-free, homozygous knockout plants

were selected and seeds harvested. Desired editing events were confirmed in T3 generation by Sanger sequencing. T3 seeds were

used for all experiments.

Plant imaging and image processing
For differential interference contract (DIC) microscopy, samples were mounted in a solution of 20% glycerol 60% lactic acid and

imaged using an Olympus BX53microscope equipped with DIC optics. Expression of pDOF2.1::GFP-GUS for DIC analysis was visu-

alized using GUS staining as described in [36].Cell wall staining for optical cross sections was done using modified Pseudo Schiff –

Propidium Iodine (mPS-PI) [37]. Marker lines were cleared using the ClearSee protocol [38] including a cell wall staining with 0.1%

Calcofluor White [39]. Confocal microscopy was performed on Leica SP8 (40X) and Leica SP2 (63X) (all water corrected objective

lenses with NA 1.2) confocal microscopes. Calcofluor White, GFP, sYFP, tandemTomato (tdT) and propidium iodide (PI) samples

were imaged at an excitation of 405nm, 488nm, 514nm, 561nm and 514nm respectively. Calcofluor White, GFP, tdT and PI were

visualized at an emission of 425-475 nm, 500-535nm, 520-550nm, 580-630nm and 600-700nm respectively. Embryos were fixed

and stained using Renaissance [40]. Embryos were popped out of the ovules and R2200 and GFP were visualized by excitation at

405 and 488 nm and detection between 430-470 nm and 500-535 nm, respectively

qRT-PCR
RNA was extracted with the RNeasy kit (QIAGEN). Poly(dT) cDNA was prepared from 1 mg of total RNA with an iScript cDNA

Synthesis Kit (Bio-Rad) and analyzed on a LightCycler480 apparatus (Roche) with SYBR GREEN I Master kit (Roche) according to
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the manufacturer’s instructions. Primer pairs were designed with the Universal Probe Library Assay Design Center (Roche). Exper-

iments were repeated in triplicate, each with three technical replicates. Data was analyzed using qBase+ software package (Bio-

gazelle). Expression levels were normalized to those of EEF1a4 and CDKA1;1. All primers used for qRT-PCR analysis can be found

in Data S1

Whole genome transcriptome analysis
pRPS5A::TMO5:GR x pRPS5A::LHW:GR (dGR) and Col-0 seeds were bleach sterilized and stratified for 24h at 4�C. Seeds were

sown on ½ MS plates and grown for 5 days in a growth room at 22�C. 5-day old plants of both Col-0 and dGR were transferred

to ½ MS plates containing 10 mM DEX and mock-plates and were sampled at the following time points: 0h, 0.5h, 1h, 2h, 3h, 4h,

5h and 6h. 300 individual root tips were sampled per sample and three biological repeats per time point were used. Root tips

were harvested directly into liquid nitrogen, RNAwas extracted using the RNeasy kit (QIAGEN). Total RNA (100 ng) was labeled using

an Ambion WT expression kit (Life Technologies) and hybridized to Arabidopsis Gene 1.0 ST arrays (Affymetrix), that probes the

expression of 27,827 unique genes. Sample labeling; hybridization to chips and image scanning was performed according manufac-

turer’s instructions. Microarray analysis was performed using MADMAX pipeline for statistical analysis of microarray data [41].

Expression values were calculated using robust multichip average (RMA) method, which includes quantile normalization [42, 43].

Probe sets on the array were redefined using current genome information [44]. In this study, probes were reorganized on the basis

of the gene definitions as available in the TAIR10 database.

Network inference
To infer a gene regulatory network (GRN) and predict the causal relationships of genes regulated by TMO5 and LHW, differentially

expressed genes (DEGs) were identified using q < 0.05 & fold change > 2 as our selection criteria, when performing pairwise com-

parisons between hours 0-0.5, 0-1, 0-2, 0-3, 0-4, 0-5, and 0-6 of the TMO5/LHW induction time course. This resulted in the identi-

fication of 237 genes differentially expressed at 0.5, 1, 2, 3, 4, 5, and 6 hours after TMO5/LHW induction, which contained 22 tran-

scription factors (Table S2). To preserve the temporal cascade of regulations, the network was inferred as individual GRNs containing

the DEGs at each time point, as opposed to predicting a GRN containing the 237 DEGs together. Specifically, because we assume

that regulation between genes can occur, not only during concurrent time points, but also between consecutive time points, the

DEGs from consecutive time points were grouped (0.5-1, 1-2, 2-3, 3-4, 4-5, 5-6 hours), and GRNs from each of the 6 resulting lists

of genes were inferred. The GRN inference on each of the 6 sets of DEGs was performed by applying a dynamic Bayesian network

(DBN)-based inference algorithm, GENIST [15]. Since GENIST offers the possibility of clustering genes based on their co-expression

prior the inference step to improve the performance of the algorithm, GENISTwas ran using a previously published TMO5-GR dataset

(TMO5 induced for short time points and a cell sorted set) [3] for the clustering step. Details about the application of GENIST to each of

the 6 sets of genes are provided below.

1. Gene selection

The genes differentially expressed at each time point after induction of TMO5/LHW, gt; for t˛f0:5; 1; 2; 3; 4; 5; 6 g hours

were selected. Then, the DEG from every two consecutive time points, gt and gt+1, were combined in sets St; for t˛f0:5&1;1&2;
2&3; 3&4; 4&5; 5&6g. Steps 2 and 3 were applied to the genes in each set Sv individually.

2. Clustering

The expression values from the TMO5 induction from De Rybel et al., 2014 were used as the input data. Clustering of the genes in Sv

was implemented by using the Silhouette index followed by linkage clustering. This resulted in a division of the Svgenes in c clusters.

3. GRN inference

3.1. Inferring intra-cluster connections for each cluster Cn, for n˛½1; c�: The expression values in the TMO5/LHW induction time course

for all genes in cluster Cn were used as the input data.

3.1.1 Selecting potential regulators: A gene gr was selected as a potential regulator of a target gene gs (denoted gr .gs) if it

exhibited a ±p3gr change of expression immediately prior a change of expression of gsof ±p3 gs:

gr .gs 4 ðgrðtÞ > ð1+pÞ3grðt� 1ÞjgrðtÞ < ð1� pÞ3grðt� 1ÞÞ & ðgsðt + 1Þ > ð1+pÞ 3 gsðtÞjgsðt + 1Þ < ð1� pÞ 3 gsðtÞÞ
(1)

where we set a low threshold ðp= 0:1Þ to ensure that no regulators were missed.

3.1.2. DBN modeling: The GRN inference step was implemented as a Dynamic Bayesian Network (DBN) learning problem, where

the dependences among the variables (genes) can be derived over adjacent time steps. Assuming stationarity and the genes to be

modeled obeyed the first order Markov assumption, the joint probability distribution could be expressed as:

PðX1; :::; XmÞ=
Y
i

PðXijX1; :::; Xi�1Þ=
Y
i

PðXijPaðXiÞÞ (2)

where Xi is the expression of gene i, m = nðT -- 1Þ is the number of genes (nodes), and PaðXiÞ is the set of regulators of gene i (parents
of node i).
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Given some observations of the variables over time, the DBN estimation was implemented by finding the structure of (2) that maxi-

mized the Bayesian Dirichlet equivalence uniform (BDeu) score [3]. Since the BDeu score of a DBN can be decomposed as the sumof

the scores of the log conditional probabilities of each node, the log of the BDeu, BDeul, was used:

BDeulðD;GÞ= logðPðGÞÞ+
Xn
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where G refers to the Bayesian graph, D refers to the dataset containing the observations of the system, Nijk indicates the number of

data vectors in which gene i,Xi, has the value k while its parents are in the jth configuration, and b refers to the hyperparameters of the

Dirichlet distribution.

From (2) and (3), the problem of deriving the DBN can be decomposed into finding the parents for each node. For this, the expres-

sion values of each gene were discretized in 2 levels (high and low). Then, for each gene, a list of all possible subsets of potential

regulators was generated. To lower the complexity of the algorithm, which increases exponentially with the number of genes, the

maximum size allowed for any subset (maximum number of regulators of a gene) was set to 3. The BDeul was used to evaluate

the likelihood that each gene was due to each subset of potential regulators. The regulators of gene i were selected as the ones con-

tained in the subset that led to the highest value of the BDeul .

3.2. Inferring inter-cluster connections: Steps 3.1.1-3.1.2 were repeated for all hubs (cluster node with the largest degree of edges

leaving the node (out-degree)) in all clusters Cn, for n ˛ [1,c]. This resulted in inter-cluster interactions among the cluster hubs.

3.3. Determining the sign of the interactions: A score was implemented to estimate whether the inferred interactions (edges) were

activations or repressions. The score was calculated for each edge as the conditional probability that a gene is expressed (or not

expressed) given that a parent was expressed (not expressed) in the prior time point, relative to the probability that a gene is ex-

pressed (or not expressed) given that a parent was not expressed (or vice versa expressed) in the prior time point. If the first condi-

tional probability is larger (or smaller) than the second one, then the parent was found to be an activator (or repressor). In the case of a

tight, the edge was found to have an undetermined sign.

The application of GENIST with this data resulted in 6 networks, corresponding to the 6 sets of DEGs, Sv. To illustrate the cascade

of regulations through time, the networks for each set were jointly visualized in Cytoscape [45]. The final network has 237 nodes,

corresponding to the 237 DEGs, and 532 edges (regulations). The thickness each edge correlates with the probability with which

the corresponding regulation was calculated (as in (3)), and the size of each node correlates with the number of genes that it directly

regulates. The predicted most important regulators can be identified as the largest nodes in the network. The network depicts the

time cascade by color-coding the regulations inferred in the different time points: red (0.5-1), green (1-2), blue (2-3), yellow (3-4),

pink (4-5), orange (5-6) hours. Overall, the network places the initial time points at the center, and shows how the cascade of regu-

lations expands outward over time.

QUANTIFICATION AND STATISTICAL ANALYSIS

All violin plots were generated using the BoxPlotR webtool using standard settings (http://shiny.chemgrid.org/boxplotr). In all plots,

center lines represent the medians; box limits indicate the 25th and 75th percentiles as determined by R software; whiskers extend

1.5 times the interquartile range from the 25th and 75th percentiles, outliers are represented by dots. The number of samples

analyzed is indicated on the top of the x axis for each sample when relevant. In the quantification of IPC cell number, one single outlier

was removed before statistical analysis. Pairwise comparisons were performed using standard two-sided Student t testing. In all

cases, * indicates a p value < 0.05 and ** indicates a p value < 0.001. In case of multiple samples, a one-way ANOVA analysis

with post hoc Tukey HSD testing was performed. Significantly different groups (p value < 0.001) of samples are indicated using lower

case letters.

DATA AND SOFTWARE AVAILABILITY

The transcriptomics data files are deposited on the Gene Expression Omnibus (accession number GEO: GSE116858).
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