394 research outputs found
Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking
Twin studies indicate that additive genetic effects explain most of the variance in nicotine dependence (ND), a construct emphasizing habitual heavy smoking despite adverse consequences, tolerance and withdrawal. To detect ND alleles, we assessed cigarettes per day (CPD) regularly smoked, in two European populations via whole genome association techniques. In these approximately 7500 persons, a common haplotype in the CHRNA3-CHRNA5 nicotinic receptor subunit gene cluster was associated with CPD (nominal P=6.9 x 10(-5)). In a third set of European populations (n= approximately 7500) which had been genotyped for approximately 6000 SNPs in approximately 2000 genes, an allele in the same haplotype was associated with CPD (nominal P=2.6 x 10(-6)). These results (in three independent populations of European origin, totaling approximately 15 000 individuals) suggest that a common haplotype in the CHRNA5/CHRNA3 gene cluster on chromosome 15 contains alleles, which predispose to ND
Evidence for the role of EPHX2 gene variants in anorexia nervosa.
Anorexia nervosa (AN) and related eating disorders are complex, multifactorial neuropsychiatric conditions with likely rare and common genetic and environmental determinants. To identify genetic variants associated with AN, we pursued a series of sequencing and genotyping studies focusing on the coding regions and upstream sequence of 152 candidate genes in a total of 1205 AN cases and 1948 controls. We identified individual variant associations in the Estrogen Receptor-ß (ESR2) gene, as well as a set of rare and common variants in the Epoxide Hydrolase 2 (EPHX2) gene, in an initial sequencing study of 261 early-onset severe AN cases and 73 controls (P=0.0004). The association of EPHX2 variants was further delineated in: (1) a pooling-based replication study involving an additional 500 AN patients and 500 controls (replication set P=0.00000016); (2) single-locus studies in a cohort of 386 previously genotyped broadly defined AN cases and 295 female population controls from the Bogalusa Heart Study (BHS) and a cohort of 58 individuals with self-reported eating disturbances and 851 controls (combined smallest single locus P<0.01). As EPHX2 is known to influence cholesterol metabolism, and AN is often associated with elevated cholesterol levels, we also investigated the association of EPHX2 variants and longitudinal body mass index (BMI) and cholesterol in BHS female and male subjects (N=229) and found evidence for a modifying effect of a subset of variants on the relationship between cholesterol and BMI (P<0.01). These findings suggest a novel association of gene variants within EPHX2 to susceptibility to AN and provide a foundation for future study of this important yet poorly understood condition
Genome-wide linkage analysis of 972 bipolar pedigrees using single-nucleotide polymorphisms.
Because of the high costs associated with ascertainment of families, most linkage studies of Bipolar I disorder (BPI) have used relatively small samples. Moreover, the genetic information content reported in most studies has been less than 0.6. Although microsatellite markers spaced every 10 cM typically extract most of the genetic information content for larger multiplex families, they can be less informative for smaller pedigrees especially for affected sib pair kindreds. For these reasons we collaborated to pool family resources and carried out higher density genotyping. Approximately 1100 pedigrees of European ancestry were initially selected for study and were genotyped by the Center for Inherited Disease Research using the Illumina Linkage Panel 12 set of 6090 single-nucleotide polymorphisms. Of the ~1100 families, 972 were informative for further analyses, and mean information content was 0.86 after pruning for linkage disequilibrium. The 972 kindreds include 2284 cases of BPI disorder, 498 individuals with bipolar II disorder (BPII) and 702 subjects with recurrent major depression. Three affection status models (ASMs) were considered: ASM1 (BPI and schizoaffective disorder, BP cases (SABP) only), ASM2 (ASM1 cases plus BPII) and ASM3 (ASM2 cases plus recurrent major depression). Both parametric and non-parametric linkage methods were carried out. The strongest findings occurred at 6q21 (non-parametric pairs LOD 3.4 for rs1046943 at 119 cM) and 9q21 (non-parametric pairs logarithm of odds (LOD) 3.4 for rs722642 at 78 cM) using only BPI and schizoaffective (SA), BP cases. Both results met genome-wide significant criteria, although neither was significant after correction for multiple analyses. We also inspected parametric scores for the larger multiplex families to identify possible rare susceptibility loci. In this analysis, we observed 59 parametric LODs of 2 or greater, many of which are likely to be close to maximum possible scores. Although some linkage findings may be false positives, the results could help prioritize the search for rare variants using whole exome or genome sequencing
Dissociation of accumulated genetic risk and disease severity in patients with schizophrenia
Genotype–phenotype correlations of common monogenic diseases revealed that the degree of deviation of mutant genes from wild-type structure and function often predicts disease onset and severity. In complex disorders such as schizophrenia, the overall genetic risk is still often >50% but genotype–phenotype relationships are unclear. Recent genome-wide association studies (GWAS) replicated a risk for several single-nucleotide polymorphisms (SNPs) regarding the endpoint diagnosis of schizophrenia. The biological relevance of these SNPs, however, for phenotypes or severity of schizophrenia has remained obscure. We hypothesized that the GWAS ‘top-10' should as single markers, but even more so upon their accumulation, display associations with lead features of schizophrenia, namely positive and negative symptoms, cognitive deficits and neurological signs (including catatonia), and/or with age of onset of the disease prodrome as developmental readout and predictor of disease severity. For testing this hypothesis, we took an approach complementary to GWAS, and performed a phenotype-based genetic association study (PGAS). We utilized the to our knowledge worldwide largest phenotypical database of schizophrenic patients (n>1000), the GRAS (Göttingen Research Association for Schizophrenia) Data Collection. We found that the ‘top-10' GWAS-identified risk SNPs neither as single markers nor when explored in the sense of a cumulative genetic risk, have any predictive value for disease onset or severity in the schizophrenic patients, as demonstrated across all core symptoms. We conclude that GWAS does not extract disease genes of general significance in schizophrenia, but may yield, on a hypothesis-free basis, candidate genes relevant for defining disease subgroups
Evidence for three genetic loci involved in both anorexia nervosa risk and variation of body mass index
The maintenance of normal body weight is disrupted in patients with anorexia nervosa (AN) for prolonged periods of time. Prior to the onset of AN, premorbid body mass index (BMI) spans the entire range from underweight to obese. After recovery, patients have reduced rates of overweight and obesity. As such, loci involved in body weight regulation may also be relevant for AN and vice versa. Our primary analysis comprised a cross-trait analysis of the 1000 single nucleotide polymorphisms (SNPs) with the lowest p-values in a genome-wide association meta-analysis (GWAMA) of AN (GCAN) for evidence of association in the largest published GWAMA for BMI (GIANT). Subsequently we performed sex-stratified analyses for these 1000 SNPs. Functional ex vivo studies on four genes ensued. Lastly, a look-up of GWAMA-derived BMI related loci was performed in the AN GWAMA. We detected significant associations (p-values < 5×10−5, Bonferroni corrected p < 0.05) for 9 SNP alleles at 3 independent loci. Interestingly, all AN susceptibility alleles were consistently associated with increased BMI. None of the genes (chr. 10: CTBP2, chr. 19: CCNE1, chr. 2: CARF and NBEAL1; the latter is a region with high linkage disequilibrium) nearest to these SNPs has previously been associated with AN or obesity. Sex-stratified analyses revealed that the strongest BMI signal originated predominantly from females (chr. 10 rs1561589; poverall: 2.47 × 10−06/pfemales: 3.45 × 10−07/pmales: 0.043). Functional ex vivo studies in mice revealed reduced hypothalamic expression of Ctbp2 and Nbeal1 after fasting. Hypothalamic expression of Ctbp2 was increased in diet induced obese (DIO) mice as compared to age-matched lean controls. We observed no evidence for associations for the look-up of BMI related loci in the AN GWAMA. A cross-trait analysis of AN and BMI loci revealed variants at three chromosomal loci with potential joint impact. The chromosome 10 locus is particularly promising given that the association with obesity was primarily driven by females. In addition, the detected altered hypothalamic expression patterns of Ctbp2 and Nbeal1 as a result of fasting and DIO implicate these genes in weight regulation
A rare missense mutation in CHRNA4 associates with smoking behavior and its consequences
Using Icelandic whole-genome sequence data and an imputation approach we searched for rare sequence variants in CHRNA4 and tested them for association with nicotine dependence. We show that carriers of a rare missense variant (allele frequency = 0.24%) within CHRNA4, encoding an R336C substitution, have greater risk of nicotine addiction than non-carriers as assessed by the Fagerstrom Test for Nicotine Dependence (P= 1.2 × 10−4). The variant also confers risk of several serious smoking-related diseases previously shown to be associated with the D398N substitution in CHRNA5. We observed odds ratios (ORs) of 1.7–2.3 for lung cancer(LC;P= 4.0 × 10−4), chronic obstructive pulmonary disease (COPD;P= 9.3 × 10−4), peripheral artery disease (PAD;P= 0.090) and abdominal aortic aneurysms (AAAs; P= 0.12), and the variant associates strongly with the early-onset forms of LC (OR = 4.49,P= 2.2 × 10−4), COPD (OR = 3.22,P= 2.9 × 10−4), PAD (OR = 3.47,P= 9.2 × 10−3) and AAA (OR = 6.44, P= 6.3 × 10−3). Joint analysis of the four smoking-related diseases reveals significant association (P= 6.8 × 10−5), particularly for early-onset cases (P=2.1 × 10−7).
Our results are in agreement with functional studies showing that the human α4β2 isoform of the channel containing R336C has less sensitivity for its agonists than the wild-type form following nicotine incubation
The Nuclear Transcription Factor PKNOX2 Is a Candidate Gene for Substance Dependence in European-Origin Women
Substance dependence or addiction is a complex environmental and genetic disorder that results in serious health and socio-economic consequences. Multiple substance dependence categories together, rather than any one individual addiction outcome, may explain the genetic variability of such disorder. In our study, we defined a composite substance dependence phenotype derived from six individual diagnoses: addiction to nicotine, alcohol, marijuana, cocaine, opiates or other drugs as a whole. Using data from several genomewide case-control studies, we identified a strong (Odds ratio = 1.77) and significant (p-value = 7E-8) association signal with a novel gene, PBX/knotted 1 homeobox 2 (PKNOX2), on chromosome 11 with the composite phenotype in European-origin women. The association signal is not as significant when individual outcomes for addiction are considered, or in males or African-origin population. Our findings underscore the importance of considering multiple addiction types and the importance of considering population and gender stratification when analyzing data with heterogeneous population
Comparison of Pathway Analysis Approaches Using Lung Cancer GWAS Data Sets
Pathway analysis has been proposed as a complement to single SNP analyses in GWAS. This study compared pathway analysis methods using two lung cancer GWAS data sets based on four studies: one a combined data set from Central Europe and Toronto (CETO); the other a combined data set from Germany and MD Anderson (GRMD). We searched the literature for pathway analysis methods that were widely used, representative of other methods, and had available software for performing analysis. We selected the programs EASE, which uses a modified Fishers Exact calculation to test for pathway associations, GenGen (a version of Gene Set Enrichment Analysis (GSEA)), which uses a Kolmogorov-Smirnov-like running sum statistic as the test statistic, and SLAT, which uses a p-value combination approach. We also included a modified version of the SUMSTAT method (mSUMSTAT), which tests for association by averaging χ2 statistics from genotype association tests. There were nearly 18000 genes available for analysis, following mapping of more than 300,000 SNPs from each data set. These were mapped to 421 GO level 4 gene sets for pathway analysis. Among the methods designed to be robust to biases related to gene size and pathway SNP correlation (GenGen, mSUMSTAT and SLAT), the mSUMSTAT approach identified the most significant pathways (8 in CETO and 1 in GRMD). This included a highly plausible association for the acetylcholine receptor activity pathway in both CETO (FDR≤0.001) and GRMD (FDR = 0.009), although two strong association signals at a single gene cluster (CHRNA3-CHRNA5-CHRNB4) drive this result, complicating its interpretation. Few other replicated associations were found using any of these methods. Difficulty in replicating associations hindered our comparison, but results suggest mSUMSTAT has advantages over the other approaches, and may be a useful pathway analysis tool to use alongside other methods such as the commonly used GSEA (GenGen) approach
Is season of birth related to disordered eating and personality in women with eating disorders?
We assessed the relation between season of birth and eating disorder symptoms and personality characteristics in a sample of 880 women with eating disorders and 580 controls from two Price Foundation Studies. Eating disorder symptoms were assessed using Structured Interview of Anorexic and Bulimic Disorders and the Structured Clinical Interview for DSM-IV. Personality traits were assessed using the Temperament and Character Inventory and the Frost Multidimensional Perfectionism Scale. Date of birth was obtained from a sociodemographic questionnaire
A Genome-Wide Association Study of Pulmonary Function Measures in the Framingham Heart Study
The ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FVC) is a measure used to diagnose airflow obstruction and is highly heritable. We performed a genome-wide association study in 7,691 Framingham Heart Study participants to identify single-nucleotide polymorphisms (SNPs) associated with the FEV1/FVC ratio, analyzed as a percent of the predicted value. Identified SNPs were examined in an independent set of 835 Family Heart Study participants enriched for airflow obstruction. Four SNPs in tight linkage disequilibrium on chromosome 4q31 were associated with the percent predicted FEV1/FVC ratio with p-values of genome-wide significance in the Framingham sample (best p-value = 3.6e-09). One of the four chromosome 4q31 SNPs (rs13147758; p-value 2.3e-08 in Framingham) was genotyped in the Family Heart Study and produced evidence of association with the same phenotype, percent predicted FEV1/FVC (p-value = 2.0e-04). The effect estimates for association in the Framingham and Family Heart studies were in the same direction, with the minor allele (G) associated with higher FEV1/FVC ratio levels. Results from the Family Heart Study demonstrated that the association extended to FEV1 and dichotomous airflow obstruction phenotypes, particularly among smokers. The SNP rs13147758 was associated with the percent predicted FEV1/FVC ratio in independent samples from the Framingham and Family Heart Studies producing a combined p-value of 8.3e-11, and this region of chromosome 4 around 145.68 megabases was associated with COPD in three additional populations reported in the accompanying manuscript. The associated SNPs do not lie within a gene transcript but are near the hedgehog-interacting protein (HHIP) gene and several expressed sequence tags cloned from fetal lung. Though it is unclear what gene or regulatory effect explains the association, the region warrants further investigation
- …