420 research outputs found
Sandy Estuarine Fill Transported into the Mouth of Chesapeake Bay
The landward flux of sand into an estuary is a process that is seldom documented or quantified, yet is important to the sedimentary dynamics of a maturing estuary. Data from three recent studies converge to demonstrate the transport of sand into Chesapeake Bay from the adjacent shelf. A 100- year sediment budget, distributions of heavy minerals, and seismic-reflection data all point to the bay mouth as a gate through which a significant quantity of sand enters the estuarine system.https://scholarworks.wm.edu/vimsbooks/1140/thumbnail.jp
Inclusive 2H(3He,t) reaction at 2 GeV
The inclusive 2H(3He,t) reaction has been studied at 2 GeV for energy
transfers up to 500 MeV and scattering angles from 0.25 up to 4 degrees. Data
are well reproduced by a model based on a coupled-channel approach for
describing the NN and N Delta systems. The effect of final state interaction is
important in the low energy part of the spectra. In the delta region, the
cross-section is very sensitive to the effects of Delta-N interaction and Delta
N - NN process. The latter has also a large influence well below the pion
threshold. The calculation underestimates the experimental cross-section
between the quasi-elastic and the delta peaks; this is possibly due to
projectile excitation or purely mesonic exchange currents.Comment: 9 pages, 9 figures, accepted for publication in EPJ
Fail-safe optimization of viscous dampers for seismic retrofitting
This paper presents a new optimization approach for designing minimum-cost
fail-safe distributions of fluid viscous dampers for seismic retrofitting.
Failure is modeled as either complete damage of the dampers or partial
degradation of the dampers' properties. In general, this leads to optimization
problems with large number of constraints. Thus, the use of a working-set
optimization algorithm is proposed. The main idea is to solve a sequence of
relaxed optimization sub-problems with a small sub-set of all constraints. The
algorithm terminates once a solution of a sub-problem is found that satisfies
all the constraints of the problem. The retrofitting cost is minimized with
constraints on the inter-story drifts at the peripheries of frame structures.
The structures considered are subjected to a realistic ensemble of ground
motions, and their response is evaluated with time-history analyses. The
transient optimization problem is efficiently solved with a gradient-based
sequential linear programming algorithm. The gradients of the response
functions are calculated with a consistent adjoint sensitivity analysis
procedure. Promising results attained for 3-D irregular frames are presented
and discussed. The numerical results highlight the fact that the optimized
layout and size of the dampers can change significantly even for moderate
levels of damage
Imaging-guided chest biopsies: techniques and clinical results
Background
This article aims to comprehensively describe indications, contraindications, technical aspects, diagnostic accuracy and complications of percutaneous lung biopsy.
Methods
Imaging-guided biopsy currently represents one of the predominant methods for obtaining tissue specimens in patients with lung nodules; in many cases treatment protocols are based on histological information; thus, biopsy is frequently performed, when technically feasible, or in case other techniques (such as bronchoscopy with lavage) are inconclusive.
Results
Although a coaxial system is suitable in any case, two categories of needles can be used: fine-needle aspiration biopsy (FNAB) and core-needle biopsy (CNB), with the latter demonstrated to have a slightly higher overall sensitivity, specificity and accuracy.
Conclusion
Percutaneous lung biopsy is a safe procedure even though a few complications are possible: pneumothorax, pulmonary haemorrhage and haemoptysis are common complications, while air embolism and seeding are rare, but potentially fatal complications
Expression of the Na(+)/l(- )symporter (NIS) is markedly decreased or absent in gastric cancer and intestinal metaplastic mucosa of Barrett esophagus
BACKGROUND: The sodium/iodide symporter (NIS) is a plasma membrane glycoprotein that mediates iodide (I(-)) transport in the thyroid, lactating breast, salivary glands, and stomach. Whereas NIS expression and regulation have been extensively investigated in healthy and neoplastic thyroid and breast tissues, little is known about NIS expression and function along the healthy and diseased gastrointestinal tract. METHODS: Thus, we investigated NIS expression by immunohistochemical analysis in 155 gastrointestinal tissue samples and by immunoblot analysis in 17 gastric tumors from 83 patients. RESULTS: Regarding the healthy Gl tract, we observed NIS expression exclusively in the basolateral region of the gastric mucin-producing epithelial cells. In gastritis, positive NIS staining was observed in these cells both in the presence and absence of Helicobacter pylori. Significantly, NIS expression was absent in gastric cancer, independently of its histological type. Only focal faint NIS expression was detected in the direct vicinity of gastric tumors, i.e., in the histologically intact mucosa, the expression becoming gradually stronger and linear farther away from the tumor. Barrett mucosa with junctional and fundic-type columnar metaplasia displayed positive NIS staining, whereas Barrett mucosa with intestinal metaplasia was negative. NIS staining was also absent in intestinalized gastric polyps. CONCLUSION: That NIS expression is markedly decreased or absent in case of intestinalization or malignant transformation of the gastric mucosa suggests that NIS may prove to be a significant tumor marker in the diagnosis and prognosis of gastric malignancies and also precancerous lesions such as Barrett mucosa, thus extending the medical significance of NIS beyond thyroid disease
ELEVATED PHENYLACETIC ACID LEVELS DO NOT CORRELATE WITH ADVERSE EVENTS IN PATIENTS WITH UREA CYCLE DISORDERS OR HEPATIC ENCEPHALOPATHY AND CAN BE PREDICTED BASED ON THE PLASMA PAA TO PAGN RATIO
Background Phenylacetic acid (PAA) is the active moiety in sodium phenylbutyrate (NaPBA) and glycerol phenylbutyrate (GPB, HPN-100), both are approved for treatment of urea cycle disorders (UCDs) - rare genetic disorders characterized by hyperammonemia. PAA is conjugated with glutamine in the liver to form phenylacetyleglutamine (PAGN), which is excreted in urine. PAA plasma levels ≥500 μg/dL have been reported to be associated with reversible neurological adverse events (AEs) in cancer patients receiving PAA intravenously. Therefore, we have investigated the relationship between PAA levels and neurological AEs in patients treated with these PAA pro-drugs as well as approaches to identifying patients most likely to experience high PAA levels. Methods The relationship between nervous system AEs, PAA levels and the ratio of plasma PAA to PAGN were examined in 4683 blood samples taken serially from: [1] healthy adults [2], UCD patients ≥2 months of age, and [3] patients with cirrhosis and hepatic encephalopathy (HE). The plasma ratio of PAA to PAGN was analyzed with respect to its utility in identifying patients at risk of high PAA values. Results Only 0.2% (11) of 4683 samples exceeded 500 ug/ml. There was no relationship between neurological AEs and PAA levels in UCD or HE patients, but transient AEs including headache and nausea that correlated with PAA levels were observed in healthy adults. Irrespective of population, a curvilinear relationship was observed between PAA levels and the plasma PAA:PAGN ratio, and a ratio > 2.5 (both in μg/mL) in a random blood draw identified patients at risk for PAA levels > 500 μg/ml. Conclusions The presence of a relationship between PAA levels and reversible AEs in healthy adults but not in UCD or HE patients may reflect intrinsic differences among the populations and/or metabolic adaptation with continued dosing. The plasma PAA:PAGN ratio is a functional measure of the rate of PAA metabolism and represents a useful dosing biomarker
Impact Factor: outdated artefact or stepping-stone to journal certification?
A review of Garfield's journal impact factor and its specific implementation
as the Thomson Reuters Impact Factor reveals several weaknesses in this
commonly-used indicator of journal standing. Key limitations include the
mismatch between citing and cited documents, the deceptive display of three
decimals that belies the real precision, and the absence of confidence
intervals. These are minor issues that are easily amended and should be
corrected, but more substantive improvements are needed. There are indications
that the scientific community seeks and needs better certification of journal
procedures to improve the quality of published science. Comprehensive
certification of editorial and review procedures could help ensure adequate
procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table
Stoichiometry of Base Excision Repair Proteins Correlates with Increased Somatic CAG Instability in Striatum over Cerebellum in Huntington's Disease Transgenic Mice
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by expansion of an unstable CAG repeat in the coding sequence of the Huntingtin (HTT) gene. Instability affects both germline and somatic cells. Somatic instability increases with age and is tissue-specific. In particular, the CAG repeat sequence in the striatum, the brain region that preferentially degenerates in HD, is highly unstable, whereas it is rather stable in the disease-spared cerebellum. The mechanisms underlying the age-dependence and tissue-specificity of somatic CAG instability remain obscure. Recent studies have suggested that DNA oxidation and OGG1, a glycosylase involved in the repair of 8-oxoguanine lesions, contribute to this process. We show that in HD mice oxidative DNA damage abnormally accumulates at CAG repeats in a length-dependent, but age- and tissue-independent manner, indicating that oxidative DNA damage alone is not sufficient to trigger somatic instability. Protein levels and activities of major base excision repair (BER) enzymes were compared between striatum and cerebellum of HD mice. Strikingly, 5′-flap endonuclease activity was much lower in the striatum than in the cerebellum of HD mice. Accordingly, Flap Endonuclease-1 (FEN1), the main enzyme responsible for 5′-flap endonuclease activity, and the BER cofactor HMGB1, both of which participate in long-patch BER (LP–BER), were also significantly lower in the striatum compared to the cerebellum. Finally, chromatin immunoprecipitation experiments revealed that POLβ was specifically enriched at CAG expansions in the striatum, but not in the cerebellum of HD mice. These in vivo data fit a model in which POLβ strand displacement activity during LP–BER promotes the formation of stable 5′-flap structures at CAG repeats representing pre-expanded intermediate structures, which are not efficiently removed when FEN1 activity is constitutively low. We propose that the stoichiometry of BER enzymes is one critical factor underlying the tissue selectivity of somatic CAG expansion
The structural basis for partitioning of the XRCC1/DNA ligase III-α BRCT-mediated dimer complexes
The ultimate step common to almost all DNA repair pathways is the ligation of the nicked intermediate to form contiguous double-stranded DNA. In the mammalian nucleotide and base excision repair pathways, the ligation step is carried out by ligase III-α. For efficient ligation, ligase III-α is constitutively bound to the scaffolding protein XRCC1 through interactions between the C-terminal BRCT domains of each protein. Although structural data for the individual domains has been available, no structure of the complex has been determined and several alternative proposals for this interaction have been advanced. Interpretation of the models is complicated by the formation of homodimers that, depending on the model, may either contribute to, or compete with heterodimer formation. We report here the structures of both homodimer complexes as well as the heterodimer complex. Structural characterization of the heterodimer formed from a longer XRCC1 BRCT domain construct, including residues comprising the interdomain linker region, revealed an expanded heterodimer interface with the ligase III-α BRCT domain. This enhanced linker-mediated binding interface plays a significant role in the determination of heterodimer/homodimer selectivity. These data provide fundamental insights into the structural basis of BRCT-mediated dimerization, and resolve questions related to the organization of this important repair complex
- …