74 research outputs found

    Application of Nonlinear Conductivity Spectroscopy to Ion Transport in Solid Electrolytes

    Full text link
    The field-dependent ion transport in thin samples of different glasses is characterised by means of nonlinear conductivity spectroscopy. AC electric fields with strengths up to 77 kV/cm are applied to the samples, and the Fourier components of the current spectra are analysed. In the dc conductivity regime and in the transition region to the dispersive conductivity, higher harmonics in the current spectra are detected, which provide information about higher--order conductivity coefficients. Our method ensures that these higher--order conductivity coefficients are exclusively governed by field--dependent ion transport and are not influenced by Joule heating effects. We use the low-field dc conductivity σ1,dc\sigma_{1,dc} and the higher--order dc conductivity coefficient σ3,dc\sigma_{3,dc} to calculate apparent jump distances for the mobile ions, aappa_{\rm app}. Over a temperature range from 283 K to 353 K, we obtain values for aappa_{app} between 39 \AA and 55 \AA . For all glasses, we find a weak decrease of aappa_{\rm app} with increasing temperature. Remarkably, the apparent jump distances calculated from our data are considerably larger than typical values published in the literature for various ion conducting glasses. These values were obtained by applying dc electric fields. Our results provide clear evidence that the equation used in the literature to calculate the apparent jump distances does not provide an adequate physical description of field-dependent ion transport.Comment: 6 pages, 5 figure

    FC2 stabilizes POR and suppresses ALA formation in the tetrapyrrole biosynthesis pathway

    Get PDF
    During photoperiodic growth, the light-dependent nature of chlorophyll synthesis in angiosperms necessitates robust control of the production of 5-aminolevulinic acid (ALA), the rate-limiting step in the initial stage of tetrapyrrole biosynthesis (TBS). We are interested in dissecting the post-translational control of this process, which suppresses ALA synthesis for chlorophyll synthesis in dark-grown plants. Using biochemical approaches for analysis of Arabidopsis wild-type (WT) and mutant lines as well as complementation lines, we show that the heme-synthesizing ferrochelatase 2 (FC2) interacts with protochlorophyllide oxidoreductase and the regulator FLU which both promote the feedback-controlled suppression of ALA synthesis by inactivation of glutamyl-tRNA reductase, thus preventing excessive accumulation of potentially deleterious tetrapyrrole intermediates. Thereby, FC2 stabilizes POR by physical interaction. When the interaction between FC2 and POR is perturbed, suppression of ALA synthesis is attenuated and photoreactive protochlorophyllide accumulates. FC2 is anchored in the thylakoid membrane via its membrane-spanning CAB (chlorophyll-a-binding) domain. FC2 is one of the two isoforms of ferrochelatase catalyzing the last step of heme synthesis. Although FC2 belongs to the heme-synthesizing branch of TBS, its interaction with POR potentiates the effects of the GluTR-inactivation complex on the chlorophyll-synthesizing branch and ensures reciprocal control of chlorophyll and heme synthesis.Chinese Scholarship CouncilDeutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Peer Reviewe

    Nonlinear Ionic Conductivity of Thin Solid Electrolyte Samples: Comparison between Theory and Experiment

    Full text link
    Nonlinear conductivity effects are studied experimentally and theoretically for thin samples of disordered ionic conductors. Following previous work in this field the {\it experimental nonlinear conductivity} of sodium ion conducting glasses is analyzed in terms of apparent hopping distances. Values up to 43 \AA are obtained. Due to higher-order harmonic current density detection, any undesired effects arising from Joule heating can be excluded. Additionally, the influence of temperature and sample thickness on the nonlinearity is explored. From the {\it theoretical side} the nonlinear conductivity in a disordered hopping model is analyzed numerically. For the 1D case the nonlinearity can be even handled analytically. Surprisingly, for this model the apparent hopping distance scales with the system size. This result shows that in general the nonlinear conductivity cannot be interpreted in terms of apparent hopping distances. Possible extensions of the model are discussed.Comment: 7 pages, 6 figure

    Fundamental questions relating to ion conduction in disordered solids

    Get PDF
    A number of basic scientific questions relating to ion conduction in homogeneously disordered solids are discussed. The questions deal with how to define the mobile ion density, what can be learned from electrode effects, what is the ion transport mechanism, the role of dimensionality, and what are the origins of the mixed-alkali effect, of time-temperature superposition, and of the nearly-constant loss. Answers are suggested to some of these questions, but the main purpose of the paper is to draw attention to the fact that this field of research still presents several fundamental challenges.Comment: Reports on Progress in Physics, to appea

    Nanoscopic Study of the Ion Dynamics in a LiAlSiO4_4 Glass Ceramic by means of Electrostatic Force Spectroscopy

    Full text link
    We use time-domain electrostatic force spectroscopy (TD-EFS) for characterising the dynamics of mobile ions in a partially crystallised LiAlSiO4_4 glass ceramic, and we compare the results of the TD-EFS measurements to macroscopic electrical conductivity measurements. While the macroscopic conductivity spectra are determined by a single dynamic process with an activation energy of 0.72 eV, the TD-EFS measurements provide information about two distinct relaxation processes with different activation energies. Our results indicate that the faster process is due to ionic movements in the glassy phase and at the glass-crystal interfaces, while the slower process is caused by ionic movements in the crystallites. The spatially varying electrical relaxation strengths of the fast and of the slow process provide information about the nano- and mesoscale structure of the glass ceramic.Comment: 5 pages, 4 figure

    Deciphering the Nature of an Overlooked Rate‐Limiting Interphase in High‐Voltage LiNi0.5_{0.5}Mn1.5_{1.5}O4_4 Cathodes: A Combined Electrochemical Impedance, Scanning Electron Microscopy and Secondary Ion Mass Spectrometry Study

    Get PDF
    High-voltage cathode active materials, such as LiNi0.5_{0.5}Mn1.5_{1.5}O4_4 (LNMO), are of major interest for the development of high-energy lithium-ion batteries. However, it has been reported that composite cathodes based on high-voltage active materials suffer from high impedances and low rate capabilities. The origin of the high impedances has not yet been clarified. Here, we use a combination of electrochemical impedance spectroscopy (EIS), focused ion beam/scanning electron microscopy/energy-dispersive X-ray spectroscopy (FIB/SEM/EDX) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) for showing that in the case of LNMO-based cathodes, a major part of the cathode impedance is related to the formation of a passivating interphase on the Al current collector. Remarkably, the impedance of this interphase can be mitigated by the targeted formation of a distinct passivating interphase, namely on the surface of the LNMO particles. The interplay between these interphases is discussed

    Specificity and sensitivity evaluation of novel and existing Bacteroidales and Bifidobacteria-specific PCR assays on feces and sewage samples and their application for microbial source tracking in Ireland

    Get PDF
    Three novel ruminant-specific PCR assays, an existing ruminant-specific PCR assay and five existing human-specific PCR assays, which target 16S rDNA from Bacteroidales or Bifidobacteria, were evaluated. The assays were tested on DNA extracted from ruminant (n = 74), human (n = 59) and non-ruminant animal (n = 44) sewage/fecal samples collected in Ireland. The three novel PCR assays compared favourably to the existing ruminant-specific assay, exhibiting sensitivities of 91 - 100% and specificities of 95 - 100% as compared to a sensitivity of 95% and specificity of 94%, for the existing ruminant-specific assay. Of the five human-specific PCR assays, the assay targeting the Bifidobacterium catenulatum group was the most promising, exhibiting a sensitivity of 100% (with human sewage samples) and a specificity of 87%. When tested on rural water samples that were naturally contaminated by ruminant feces, the three novel PCR assays tested positive with a much greater percentage (52 - 87%) of samples than the existing ruminant-specific assay (17%). These novel ruminant-specific assays show promise for microbial source tracking and merit further field testing and specificity evaluation.ERTD
    corecore