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Abstract 24 

 25 

Three novel ruminant-specific PCR assays, an existing ruminant-specific PCR assay and 26 

five existing human-specific PCR assays, which target 16S rDNA from Bacteroidales or 27 

Bifidobacteria, were evaluated. The assays were tested on DNA extracted from ruminant 28 

(n = 74), human (n = 59) and non-ruminant animal (n = 44) sewage/fecal samples 29 

collected in Ireland. The three novel PCR assays compared favourably to the existing 30 

ruminant-specific assay, exhibiting sensitivities of 91 - 100% and specificities of 95 - 31 

100% as compared to a sensitivity of 95% and specificity of 94%, for the existing 32 

ruminant-specific assay. Of the five human-specific PCR assays, the assay targeting the 33 

Bifidobacterium catenulatum group was the most promising, exhibiting a sensitivity of 34 

100% (with human sewage samples) and a specificity of 87%. When tested on rural water 35 

samples that were naturally contaminated by ruminant feces, the three novel PCR assays 36 

tested positive with a much greater percentage (52 - 87%) of samples than the existing 37 

ruminant-specific assay (17%). These novel ruminant-specific assays show promise for 38 

microbial source tracking and merit further field testing and specificity evaluation. 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 
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1. Introduction 47 

 48 

The need to determine the source of fecal contamination of water has led to the 49 

development of various fecal source identification methods, a relatively new field 50 

commonly known as microbial source tracking (MST). The methods of MST used in this 51 

study are based on molecular detection of host-specific strains of bacteria from the order 52 

Bacteroidales and the genus Bifidobacterium. Both these groups of bacteria are 53 

abundantly present in feces and several researchers have concluded that some strains of 54 

the microorganisms are confined to specific hosts (Fiksdal et al., 1985; Gavini et al., 55 

1991; Resnick and Levin, 1981). Host-specific Bacteroidales molecular assays have been 56 

successfully used as a method of MST by a number of research groups (Gawler et al., 57 

2007; Kildare et al., 2007; Seurinck et al., 2005). Katherine Field and colleagues, in 58 

particular, have performed extensive research into the use of Bacteroidales 16S rDNA-59 

based PCR assays for MST (Bernhard and Field, 2000a; b; Bernhard et al., 2003; Field et 60 

al., 2003; Shanks et al., 2006). The use of molecular methods to detect host-specific 61 

species of Bifidobacteria is not as well studied as detection methods for Bacteroidales but 62 

a number of studies have been performed (Bernhard and Field, 2000a; Blanch et al., 63 

2006; Bonjoch et al., 2004; Lynch et al., 2002). 64 

Fecal contamination of rural water supplies in Ireland is common (EPA, 2008) 65 

and apart from human feces, the main sources of contamination are cow and sheep feces 66 

(both ruminants). The principal aim of this study was the development and evaluation of 67 

novel ruminant-specific PCR assays and the use of these assays for MST on contaminated 68 

water samples collected from rural water supplies in Ireland. To develop the assays, novel 69 
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ruminant-associated Bacteroidales 16S rDNA sequences were identified by terminal 70 

restriction fragment length polymorphism (TRFLP) analysis of human and ruminant 71 

fecal/sewage samples. These sequences were exploited for the design of ruminant-72 

specific PCR primers. A secondary aim of the study was the evaluation of a number of 73 

existing putatively host-specific PCR assays on Irish fecal/sewage reference samples and 74 

the application of the assays for MST on Irish naturally contaminated water samples.  75 

The human-specific (HF183F & Bac708R) and ruminant-specific (CF128F & 76 

Bac708R) PCR assays, designed by Bernhard and Field in 2000 for MST (2000a; b), 77 

were the first set of Bacteroidales PCR assays chosen for evaluation in this study. The 78 

second set were designed to detect Bacteroides thetaiotaomicron (BT 1 & 2) and 79 

Bacteroides vulgatus (BV 1 & 2) and were developed by Wang et al. (1994; 1996) for the 80 

detection of anaerobic bacteria in human and animal fecal samples. The authors found 81 

that both Bacteroides thetaiotaomicron and Bacteroides vulgatus were present in large 82 

numbers in adult human samples and at lower numbers or absent in animal samples 83 

(Wang et al., 1996).  84 

Two Bifidobacteria-specific PCR assays designed by Matsuki et al. (1999; 1998) 85 

for microbial ecology studies of the human gastrointestinal tract were also chosen for 86 

evaluation in this study.  The first assay was designed to detect B. adolescentis (BiADO 1 87 

& 2) and the second was designed to detect B. catenulatum and B. pseudocatenulatum 88 

(BiCAT 1 & 2). These species were found in a high percentage of the human fecal 89 

samples tested by Matsuki et al (1999). 90 

All the assays developed and/or evaluated in this study are conventional PCR 91 

assays as opposed to real-time PCR assays.  A number of Bacteroidales-specific real-time 92 
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PCR assays have been developed which have the potential to detect and quantify host-93 

specific targets in water (Kildare et al., 2007; Layton et al., 2006; Okabe et al., 2007; 94 

Reischer et al., 2007; Reischer et al., 2006; Stricker et al., 2006). However, none of these 95 

assays were available for evaluation during the timeframe of this study. The advantages 96 

of real-time PCR include increased specificity, sensitivity and the ability to accurately 97 

quantify the target. However, since real-time PCR technology is expensive, requires 98 

additional expertise and is not generally available in Irish local authority environmental 99 

monitoring laboratories, this development and evaluation of conventional PCR assays is 100 

still worthwhile. 101 

 102 

2. Materials and methods 103 

 104 

2.1 Sample collection and determination of E. coli densities 105 

Human sewage samples (untreated primary effluent, n = 33) were collected from two 106 

different wastewater treatment works in Co. Galway, Ireland. Ruminant (n = 74) and non-107 

ruminant (n = 44) animal fecal and slurry samples were collected from various farms in 108 

Co. Galway. The ruminant samples consisted of cow (n = 25), sheep (n = 39), deer (n = 109 

1) and goat (n= 4) fecal samples and five cow slurry samples. The non-ruminant samples 110 

consisted of horse (n = 12), donkey (n = 2), dog (n = 2), goose (n = 1), chicken (n = 2), 111 

pet pig (n= 2) and farmed pig (n = 8) fecal samples and 15 pig slurry samples. Raw and 112 

piped water samples were collected every two weeks from three frequently contaminated 113 

rural drinking water supplies in Co. Galway over a six month period. E. coli 114 

concentrations (most probable number [MPN] per 100-ml of water sample) were 115 
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measured using Colilert-18 and Quanti-tray/2000 (Idexx, Westbrook, ME). All samples 116 

were collected with sterile utensils, placed in sterile containers and transported on ice. 117 

Water samples (1-L) were filtered within six hours of collection using 0.2-µm-pore-size 118 

cellulose nitrate filter membranes (Sartorius AG, Goettingen, Germany). Turbid water 119 

samples were pre-filtered with a 2.7-µm-pore-size glass fibre filter membrane to remove 120 

debris before filtration with aforementioned 0.2-µm-pore-size filter membranes. 121 

Fecal/sewage samples and filter membranes were stored at -80ºC. DNA from 26 122 

individual human stool samples, which were donated by healthy human adults, was 123 

kindly provided by the Microbiology Department, University College Cork, Ireland. 124 

 125 

2.2  DNA extraction 126 

DNA was extracted from 20 mg of sewage sediment, from fecal samples and from filter 127 

membranes using the Powersoil™ DNA Isolation Kit (MoBio, Carlsbad, CA) following 128 

the manufacturer’s protocol, modified to include the use of four washes with solution C5 129 

and a 10 min incubation at 70°C after the addition of solution C1. A mock DNA 130 

extraction was included each time DNA extractions were performed to test for 131 

contamination of kit components. To confirm DNA samples were free of PCR inhibitors, 132 

10 ng of DNA was tested using the Bacteroidales-specific primer pair Bac32F & Bac 133 

708R (Table 1).  Amplification indicated the absence of inhibitors. 134 

 135 

2.3 Clone library construction 136 

The Bac32F & Bacto1080R primer pair (Table 1) was used to amplify a ~ 1060 bp 137 

fragment of 16S rDNA from DNA (10 ng) extracted from six cow fecal samples, five 138 
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sheep fecal samples and five human sewage samples. Each 50-µl PCR mixture contained: 139 

1 × Taq polymerase buffer, 200µM dNTP (dATP, dCTP, dGTP, dTTP), 12.5 pmol of 140 

each primer, and 1.25 U Taq DNA polymerase (Sigma-Aldrich, St. Louis, MO). Thermal 141 

cycling was performed in a Mastercycler personal PCR machine (Eppendorf, Hamburg, 142 

Germany) as follows: an initial denaturation step at 94oC for 3 minutes, 30 cycles 143 

consisting of 94oC for 30 s, 58oC for 1 min, and 72oC for 1 min, followed by a final 5-144 

min extension at 72oC. A positive control (fecal DNA from the target source previously 145 

found positive or plasmid DNA containing the target insert) and a negative no-template 146 

control were included in every experiment and all PCR assays were performed in 147 

triplicate. After purification (‘High Pure PCR Product Purification Kit’, Roche 148 

Diagnostics, Mannheim, Germany) and quantification of the PCR products (PicoGreen 149 

dsDNA Quantitation Kit, Molecular Probes, Eugene, OR) three pools of PCR products, 150 

each representing one of the host species, were cloned, (TOPO TA Cloning® kit, 151 

Invitrogen, De Schelp, Netherlands). Plasmid DNA was extracted from 100 clones per 152 

library (QIAprep Spin Miniprep Kit, Qiagen, Hilden, Germany) and clones were resolved 153 

into operational taxonomic units (OTUs) using amplified rDNA restriction analysis 154 

(ARDRA) with both HaeIII and AluI (Roling and Head, 2005). A representative clone 155 

from each OTU group identified was sequenced by MWG BIOTECH AG (Ebensburg, 156 

Germany). The sequence data were checked for chimeric properties using Chimera Check 157 

on the RDP II website and using the Mallard (Ashelford et al., 2006) and Pintail 158 

(Ashelford et al., 2005) programs of the Bioinformatic Toolkit website 159 

(http://www.bioinformatics-toolkit.org/index.html). Non-chimeric sequences were 160 

aligned using the multiple sequence alignment program ClustalW 161 
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(http://www.ebi.ac.uk/Tools/clustalw/index.html). Default parameters were used for 162 

ClustalW and all other computer programs utilized. Aligned sequences showing > 97% 163 

similarity were treated as a single OTU (Okabe et al., 2007) and only one of each OTU 164 

was included in further analysis. 165 

 166 

2.4  TRFLP analysis 167 

DNA from the six cow and five sheep feces samples and six human sewage samples used 168 

in clone library construction was amplified as previously described (Section 2.3) this time 169 

using fluorescently labelled primers Bac32F (5’- hexachlorofluorescein [HEX] labelled) 170 

and Bacto1080R (5’- [6]-carboxyfluorescein [FAM] labelled). The PCR reaction was 171 

carried out in triplicate for each sample and the products were pooled and purified as 172 

described in Section 2.3. PCR products were digested with HaeIII and fragment sizes 173 

were measured by polyacrylamide gel electrophoresis in an automated ABI Prism 310 174 

Genetic Analyzer using the GS2500 TAMRA size marker (performed by Gene Analysis 175 

Service GmbH, Berlin, Germany). Eight of the samples were analyzed in duplicate to 176 

assess the reproducibility of the TRFLP profiles. 177 

 178 

2.5 Ruminant-specific PCR primer design 179 

Putative ruminant-specific clone sequences were aligned with all sequences from the 180 

human fecal DNA clone library and putative ruminant-specific PCR primers were 181 

designed adhering to general primer design guidelines (Dieffenbach et al., 1995). Primers 182 
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were checked with Premier Biosoft International’s free online primer analysis program 183 

Netprimer (http://www.premierbiosoft.com/netprimer/index.html).  184 

 185 

2.6  Evaluation of host-specific PCR assays  186 

The host-specific PCR assays were tested on all the samples listed in Table 2, using the 187 

PCR reaction components and conditions detailed in Section 2.3. The PCR cycling 188 

conditions described by Field et al. (2003) for the HF183F & Bac708R primer pair and 189 

the CF128F & Bac708R primer pair were used without modification. The optimum 190 

annealing temperatures for the novel ruminant-specific PCR assays were determined 191 

empirically (data not shown) as were the annealing temperatures for the other existing 192 

PCR assays since these PCR assays were not originally developed for use in MST. The 193 

final annealing temperatures used are listed in Table 1. The sensitivity and the specificity 194 

of all the PCR assays was calculated using standard definitions (Gawler et al., 2007). 195 

  196 

2.7 Evaluation of the sample limit of detection (SLOD) and method detection 197 

limit (MDL) of host-specific PCR assays 198 

The SLOD of the assays was defined as the minimum dry weight of feces per filter 199 

membrane that could be detected using the assays. This was assessed by extracting DNA 200 

in triplicate from decimal dilutions of 1-L water samples to which 100 mg of cow feces 201 

or human sewage had been added. The MDL was defined as the minimum number of 202 

copies of the 16S rRNA gene template that could be detected using the ruminant-specific 203 

assays. For this method, plasmid DNA containing the target Bacteroidales 16S rDNA 204 
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fragment was decimally diluted to give a range of DNA from 109 to 1 copy of plasmid 205 

DNA per µl and tested with the PCR assays.  206 

 207 

3.  Results and Discussion 208 

 209 

3.1 Host-specific sequence identification 210 

3.1.1 Clone library analysis 211 

The first step in host-specific sequence identification was the construction of clone 212 

libraries using DNA extracted from cow, sheep and human feces/sewage samples. One 213 

hundred clones from each library were resolved into OTUs and representative clones 214 

from each OTU were sequenced. All sequences were submitted to Genbank under the 215 

following accession numbers; cow clone library: EU573790 – EU573833; human clone 216 

library: EU573834 – EU573866; sheep clone library: EU573867 – EU573924. 217 

 218 

3.1.2 TRFLP analysis 219 

The next step in host-specific sequence identification was TRFLP analysis of the same 220 

DNA samples used to generate the clone libraries. Analysis of the TRFLP profiles 221 

performed in duplicate confirmed the reproducibility of the method. As illustrated by the 222 

representative TRFLP profiles presented in Figure 1, there were HEX-labelled ruminant-223 

associated TRFs at 190 - 191 bp and 222 - 224 bp, and sheep-associated peaks at 105 - 224 

106 bp, 110 bp and 146 bp. Figure 2 illustrates the two FAM-labelled ruminant-specific 225 

TRFs which were identified in the profiles, one at 69 - 70 bp and one at 81 bp.  226 
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Several cloned Bacteroidales sequences corresponding to the ruminant-specific 227 

TRFs were identified from the cow and sheep fecal DNA clone libraries. The lengths of 228 

experimentally determined TRFs, as compared to sequence-determined TRFs, were 229 

inaccurate by up to 4 bp (data not shown) which concurs with other studies (Bernhard and 230 

Field, 2000a; Clement et al., 1998; Pandey et al., 2007). The putative ruminant-specific 231 

sequences were used to design ruminant-specific primers as described in Section 2.5. 232 

 233 

3.2 Host-specific PCR assay evaluation 234 

3.2.1  Specificity and sensitivity evaluation 235 

Following an initial evaluation of novel ruminant-specific PCR assays on a small number 236 

of fecal/sewage samples, three assays emerged as potentially useful; Bac32F & RumD1R 237 

(product 979 bp), Bac32F & RumD2R (product 997 bp) and RumB1F & BacPreR 238 

(product 714 bp) (Table 1). These three PCR assays were then evaluated using a full 239 

range of target and non-target fecal samples (Table 2).  240 

In general, the sensitivity and specificity of the novel ruminant-specific PCR 241 

assays was high, ranging from 91 – 100% sensitivity and 95 – 100% specificity (Table 2). 242 

The novel ruminant-specific PCR assays compared well to the CF128F & Bac708R assay 243 

(which had a sensitivity of 95% and a specificity of 94%).  Although none of the novel 244 

ruminant-specific PCR assays developed exhibited 100% sensitivity and 100% 245 

specificity, results were consistent with other studies where ruminant-specific PCR assays 246 

were developed or tested (Gawler et al., 2007; Gourmelon et al., 2007; Kildare et al., 247 

2007). 248 
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All three novel ruminant-specific PCR assays amplified DNA from all of the 25 249 

individual cow fecal DNA samples and from all or most of the other ruminant fecal 250 

samples (Table 2). Most importantly, none of the novel ruminant-specific PCR assays 251 

amplified DNA from any of human sewage or fecal samples and so could be used as a 252 

tool to differentiate between human and animal contamination.  253 

The human-specific HF183F & Bac708R assay was 100% specific. However, the 254 

assay was positive for only three of the 26 individual human fecal samples (r = 12%) and 255 

only 23 of the 33 human sewage samples (r = 70%). This assay was tested on human 256 

sewage samples from four European countries, including Ireland, by Gawler et al. (2007). 257 

The sensitivity results obtained by these authors varied between 76% and 100%, with a 258 

sensitivity of 88% for Irish samples. There appears to be a degree of variation in the 259 

quantity of this target in Irish sewage samples when the results obtained in this study are 260 

compared to the results obtained by Gawler et al. This would suggest a need to validate 261 

this assay in the location it is to be used before its application as a MST tool.  262 

The BV 1 & 2 PCR assay (Wang et al., 1994) and the BiADO 1 & 2 PCR assay  263 

(Matsuki et al., 1998) had similar sensitivities for individual human fecal samples (88% 264 

and 85% respectively) and both were 100% sensitive for human sewage samples (Table 265 

2). These assays also had comparable specificities, amplifying DNA from many of the 266 

pig samples and at least one ruminant fecal sample.  267 

The BiCAT 1 & 2 PCR assay (Matsuki et al., 1998) had a sensitivity of 46% for 268 

individual human fecal samples and a sensitivity of 100% for human sewage samples 269 

(Table 2). The low sensitivity for individual human fecal samples is not a significant 270 

drawback since from an environmental monitoring context, the ability to detect mixed 271 
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sewage samples is more important than the ability to detect individual human fecal 272 

samples.  The assay did not test positive with any ruminant fecal samples and the only 273 

non-human fecal samples which tested positive were pig slurry samples, making it 274 

potentially the most useful human-specific assay tested for MST, since in many cases, pig 275 

fecal contamination can be ruled out as a potential source of contamination. 276 

 277 

3.2.2 SLOD and MDL of host-specific PCR assays 278 

The SLOD of all PCR assays was evaluated and the MDL was evaluated for the 279 

ruminant-specific assays only (because the development of ruminant-specific assays was 280 

the focus of this study). 281 

The ruminant-specific PCR assay with the lowest SLOD was the Bac32F & 282 

RumD1R assay with a SLOD of 7.3 × 10-6 g (dry weight) of feces per filter (Table 3). 283 

The assays with the next lowest SLOD were Bac32F & RumD2R, followed by RumB1F 284 

& BacPreR and CF128F & Bac708R (Table 3).  285 

The ruminant-specific PCR assays with the lowest MDL were RumB1F & 286 

BacPreR and Bac32F & RumD2R. Both of these PCR assays tested positive with 102 - 287 

103 copies of target plasmid per 50-µl PCR reaction (Table 3). The MDL for the two 288 

other ruminant-specific PCR assays (Bac32F & RumD1R and CF128F & Bac708R) was 289 

tenfold higher; at 103 - 104 copies of the plasmid (Table 3). The MDL of the CF128F & 290 

Bac708R PCR assay was also performed in a study by Shanks et al. (2006). The authors 291 

reported that the assay routinely detected 102 copies of target plasmid DNA, which is a 10 292 

to 102  fold lower MDL than determined in this study. This MDL variation is possibly due 293 

to the different PCR reagents, Taq polymerase and PCR thermal cyclers used. In a study 294 
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by Gawler et al. (2007) on the CF128F & Bac708R PCR assay, a detection limit of ~ 2.5 295 

× 104 copies of target plasmid DNA was determined, similar to the results obtained in this 296 

study. Inter-laboratory variation has been observed by other groups (Griffith et al., 2003) 297 

which emphasizes the need to establish standard operating procedures for MST methods 298 

and suggests that each new MST method should be validated in the laboratory where it is 299 

to be used. 300 

The human-specific PCR assays with the lowest SLODs were the BiADO 1 & 2 301 

and BV 1 & 2 assays (Table 3). These assays both had SLODs of 6.6 × 10-6 g (dry 302 

weight) of human sewage per filter. The BiCAT 1 & 2 assay had a SLOD of 6.6 × 10-4 g 303 

and the HF183F & Bac708R assay had the highest SLOD of 6.6 × 10-2 g (dry weight) of 304 

human sewage per filter. This is a relatively high SLOD which could mean the assay 305 

would only be useful in cases of heavily contaminated water. However, a number of other 306 

researchers have successfully used this assay in the field (Gourmelon et al., 2007; 307 

Lamendella et al., 2007; Shanks et al., 2006) so this high SLOD may be due to the 308 

particular sample set tested in this study. 309 

 310 

3.3  Application of host-specific PCR assays on naturally contaminated rural 311 

water samples 312 

Both the novel and existing host-specific PCR assays were applied as a method of MST  313 

to samples taken from contaminated rural drinking water supplies. All the rural water 314 

sources were located in pasture lands for cows and sheep and so were expected to be 315 

contaminated by ruminant feces. E. coli contamination in the rural water samples varied 316 

from 0 to 2203 E. coli per 100 ml but only water samples with greater than 50 E. coli per 317 
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100 ml (n = 23) were tested with the host-specific assays. The ruminant-specific PCR 318 

assays with the highest detection rates were the Bac32F & RumD2R assay and the 319 

RumB1F & BacPreR assay which were positive for ruminant DNA in 87% (20/23) of the 320 

rural water samples tested. The Bac32F & RumD1R assay was positive for approximately 321 

52% (12/23) of the rural water samples. The ruminant-specific PCR assay CF128F & 322 

Bac708R assay was positive for ~ 17% (4/23) of the rural water samples. Possible 323 

reasons for the superior performance of the novel ruminant-specific PCR assays include 324 

the possibility that the novel assays detect microorganisms which persist for longer in the 325 

environment or that the novel assays target an indigenous microorganism that is abundant 326 

in local fecal pollution. The latter may indicate that methods developed in the region 327 

where they are to be used may perform better than methods developed in other regions or 328 

countries.  329 

Two samples with relatively high levels of E. coli contamination (77 and 178 E. 330 

coli per 100 ml) which were pre-filtered with 2.7 µm-pore-size glass fibre filter 331 

membranes (Section 2.1) tested negative with all the ruminant-specific PCR assays. It is 332 

possible that pre-filtration removed target species of Bacteroidales that may have been 333 

attached to particles of manure or debris. However, these negative results could also be 334 

explained by the inconsistent correlation observed in this study between the level of E. 335 

coli contamination and PCR detection of Bacteroidales in the water (data not shown). A 336 

study by Shanks et al. (2006) also found that there was poor correlation between E. coli 337 

counts and presence of ruminant-specific Bacteroidales. 338 

Two of the putatively human-specific assays (HF183F & Bac708R and BiCAT 1 339 

& 2) did not amplify DNA from any of the rural water samples, while the other two 340 
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assays (BV 1 & 2 and BiADO 1 & 2) tested positive with five and three of the rural water 341 

samples, respectively. The HF183F & Bac708R and BiCAT 1 & 2 PCR assays are also 342 

the only two putatively human-specific assays that did not amplify DNA from any 343 

ruminant DNA samples (Table 3). It is possible that the BV 1 & 2 and BiADO 1 & 2 344 

assays were detecting ruminant fecal contamination in the rural water samples rather than 345 

a human fecal source of contamination. Nonetheless, the possibility of contamination of 346 

the water by human waste cannot be ruled out since there may have been leaking septic 347 

tanks in the area.   348 

Overall, the results of the testing of the contaminated rural water samples 349 

tentatively reveal, that as anticipated by land-use patterns, the main source of 350 

contamination of the raw water of these three rural drinking water supplies is ruminant in 351 

origin. 352 

 353 

4. Conclusions 354 

 355 

Of the five putatively human-specific published PCR assays evaluated in this 356 

study, the BiCAT 1 & 2 PCR assay, which targets Bifidobacterium catenulatum and 357 

Bifidobacterium pseudocatenulatum, shows most promise for use as a method of 358 

detecting human fecal contamination.  359 

The ruminant-specific PCR assays developed in this study show good specificity, 360 

sensitivity, have low SLODs and MDLs and have been used to amplify putatively 361 

ruminant-specific Bacteroidales strains from naturally contaminated water samples. All 362 

of the assays developed in this study compared favourably to the CF128F & Bac708R 363 
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PCR assay.  The novel ruminant-specific PCR assays show promise for use in MST 364 

studies but require more extensive evaluation both in vitro and in field studies before they 365 

could be employed as an unambiguous method of identifying ruminant fecal pollution. As 366 

mentioned in the introduction, all the PCR assays developed and/or tested in this study 367 

are conventional PCR assays as opposed to real-time or quantitative PCR (qPCR) assays. 368 

While qPCR offers the possibility of elucidating the quantities of different fecal inputs in 369 

a contaminated water source, for true quantification of fecal sources with qPCR, not only 370 

will the distribution of Bacteroidales in different types of feces need to be established, 371 

but also the persistence of host-specific Bacteroidales, the stability of their relative ratios 372 

in the environment and their resistance to waste treatment  (Santo Domingo et al., 2007). 373 

Nonetheless, it would be advantageous, in the future, to convert the ruminant-specific 374 

conventional PCR assays developed in this study into real-time PCR assays.  375 

 376 
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Table 1 - Primers used in this study 511 

 512 

Primersa  Sequence (5’-3’) Target Annealing 

temp (ºC) 

Reference 

CF128F CCAACYTTCCCGWTACTC Bacteroidales 62ºC (Bernhard and Field, 

2000b) 

HF183F ATCATGAGTTCACATGTCCG Bacteroidales 63ºC (Bernhard and Field, 

2000b) 

Bac32F AACGCTAGCTACAGGCTT Bacteroidales Variableb (Bernhard and Field, 

2000a) 

Bac708R CAATCGGAGTTCTTCGTG Bacteroidales Variableb (Bernhard and Field, 

2000a) 

Bacto1080R GCACTTAAGCCGACACCT Bacteroidales 58ºC (Dore et al., 1998) 

BT 1 GGCAGCATTTCAGTTTGCTTG Bacteroides 50ºC (Wang et al., 1994) 
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thetaiotaomicron 

BT 2 GGTACATACAAAATTCCACACGT Bacteroides 

thetaiotaomicron 

50ºC (Wang et al., 1994) 

BV 1  GCATCATGAGTCCGCATGTTC Bacteroides vulgatus 50ºC (Wang et al., 1994) 

BT 2 TCCATACCCGACTTTATTCCTT Bacteroides vulgatus 50ºC (Wang et al., 1994) 

BiADO 1  CTCCAGTTGGATGCATGTC Bifidobacterium adolescentis 55ºC (Matsuki et al., 1998) 

BiADO 2 CGAAGGCTTGCTCCCAGT Bifidobacterium adolescentis 55ºC (Matsuki et al., 1998) 

BiCAT 1  CGGATGCTCCGACTCCT Bifidobacterium catenulatum 

and Bifidobacterium 

pseudocatenulatum 

61ºC (Matsuki et al., 1998) 

BiCAT 2 CGAAGGCTTGCTCCCGAT Bifidobacterium catenulatum 

and Bifidobacterium 

pseudocatenulatum 

61ºC (Matsuki et al., 1998) 

RumD1R ATCTCTGAGCCTGTCCAG Bacteroidales 60ºC This study 
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RumD2R TGGTCCGAAGAAGGGCCC Bacteroidales 63ºC This study 

RumB1F CTCCGCATGGAGTTTCCAC Bacteroidales 62ºC This study 

BacPreR AGGTGTCGGCTTAAGTGC Bacteroidales 62ºC (Avgustin et al., 1994) 

 513 

a The primer pairs CF128F & Bac708R, RumB1F & BacPreR, Bac32F & RumD1R and Bac32F & RumD2R are putatively ruminant-514 

feces-specific. The primer pairs HF183F & Bac708R, BT 1 & BT2, BV 1 & BV2, BiADO 1 & BiADO 2, BiCAT 1 & BiCAT 2 are 515 

putatively human-feces-specific. The primer pairs Bac32F & Bacto1080R and Bac32F & Bac708R were non-host-specific. 516 

bWhen Bac32F was paired with Bac708R, the annealing temperature of 53ºC was used, when paired with Bacto1080R, RumD1R or 517 

RumD2R the annealing temperature listed for these reverse primers was used. When Bac708R was paired with CF128F or HF183F 518 

the annealing temperature listed for these forward primers was used. 519 

 520 
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Table 2 - Sensitivity and specificity of host-specific PCR assays  521 

Sensitivity 

and 

Specificity 

RumB1F 

& 

BacPreR 

Bac32F & 

RumD1R 

Bac32F 

& 

RumD2R 

CF128F & 

Bac708R 

HF183F & 

Bac708R 

BT 1 & 2b 

 

BV 1 & 2 

 

BiADO 1 

& 2 

BiCAT 1 

& 2 

% Sensitivity 

(r) 

97 91 100 95 12/70c 65/39c 88/100c 85/100c 46/100c 

% Specificity 

(s) 

97 100 95 94 100 NT 86 84 87 

Sample Type No. of positive PCR results/No. of samples tested 

Human 

sewage 

0/33 0/33 0/33 0/33 23/33 13/33 33/33 33/33 33/33 

Human feces 0/26 0/26 0/26 0/26 3/26 17/26 23/26 22/26 12/26 

Cowa 25/25 25/25 25/25 25/25 0/25 NT 0/25 4 w/25 0/25 

Cowa Slurry 5/5 4/5 5/5 1/5 0/5 NT 0/5 0/5 0/5 
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Sheepa 37/39 34/39 39/39 39/39 0/39 NT 1/39 1w/39 0/39 

Deera 1/1 1/1 1/1 1/1 0/1 NT 0/1 0/1 0/1 

Goata 4/4 3/4 4/4 4/4 0/4 NT 0/4 0/4 0/4 

Horse 1w/12 0/12 2w/12 0/13 0/13 NT 0/13 0/13 0/13 

Donkey 0/2 0/2 0/2 0/2 0/2 NT 0/2 0/2 0/2 

Dog 0/2 0/2 0/2 0/2 0/2 NT 0/2 0/2 0/2 

Goose 0/1 0/1 0/1 0/1 0/1 NT 0/1 0/1 0/1 

Chicken 0/2 0/2 0/2 0/2 0/2 NT 0/2 0/2 0/2 

Pet Pig 2 w/2 0/2 0/2 2/2 0/2 NT 2/2 0/2 0/2 

Pig 0/8 0/8 0/8 4/8 0/8 NT 2/8 0/8 0/8 

Pig Slurry 0/15 0/15 3 w/15 0/15 0/15 NT 11/15 14/15 15/15 

aRuminant species 522 

bThese primer pairs were not tested on all the samples as they did not exhibit adequate specificity or sensitivity in initial assays.  523 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

cSensitivity evaluation results for human-specific PCR assays based on testing the human-specific PCR assays with individual human 524 

feces (n=26)/human sewage (n=33) separately  525 

wIndicates there was a very weak band on the gel, reflecting poor PCR product yield  526 

NT – not tested 527 
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Table 3 - SLOD and MDL of host-specific PCR assays  528 

PCR Assay SLODa  - g of dry feces/sewage 

[g of wet feces/sewage] 

MDLa - no. of copies of 

plasmid per 50-µl PCR 

reaction 

HF183F & Bac708R 6.6 × 10-2 

[1 × 10-1 ] 

NT 

BiCAT 1 & 2 6.6 × 10-4 

[1 × 10-3 ] 

NT 

BiADO 1 & 2 6.6 × 10-6 

[1 × 10-5 ] 

NT 

BV 1 & 2 6.6 × 10-6 

[1 × 10-5 ] 

NT 

CF128F & Bac708R 7.3 × 10-3 to 7.3 × 10-4 

[1 × 10-2  to 1 × 10-3 ] 

1 ×103 to 1 ×104 

Bac32F & RumD1R 7.3 × 10-6 

[1 × 10-5 ] 

1 ×103 to 1 ×104 

Bac32F & RumD2R 7.3 × 10-5 

[1 × 10-4 ] 

1 ×102 to 1 ×103 

RumB1F & BacPreR 7.3 × 10-3 to 7.3 × 10-4 

[1 × 10-2 to 1 × 10-3 ] 

1 ×102 to 1 × 103 

a10x to 10y indicates that all of the triplicate samples amplified at 10x and some amplified 529 

at 10y 530 

NT – not tested 531 
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Fig. 1 -  HEX labelled TRFLP profiles of 16S rDNA from two of each cow [(a) and (b)] 532 

and sheep fecal [(c) and (d)]and human sewage DNA samples [(e) and (f)], amplified 533 

with Bac32F-HEX and Bacto1080R-FAM and digested with HaeIII.  534 

 535 

Fig. 2 - FAM labelled TRFLP profiles of 16S rDNA fragments two of each cow [(a) and 536 

(b)] and sheep fecal [(c) and (d)] and human sewage DNA samples [(e) and (f)], 537 

amplified with Bac32F-HEX and Bacto1080R-FAM and digested with HaeIII.  538 

 539 
 540 
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