Engineering Conferences International ECI Digital Archives

Functional Glasses: Properties And Applications for Energy and Information

Proceedings

Winter 1-8-2013

Ion Transport across Grain Boundaries in Fast Lithium Ion Conducting Glass Ceramics

Bernhard Roling University of Marburg

Katharina I. Gries *University of Marburg*

Michael Gellert University of Marburg

Kerstin Volz University of Marburg

Fabio Rosciano Advanced Technology Division, Toyota Motor Europe, Belgium

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/functional_glasses Part of the <u>Materials Science and Engineering Commons</u>

Recommended Citation

Bernhard Roling, Katharina I. Gries, Michael Gellert, Kerstin Volz, Fabio Rosciano, and Chihiro Yada, "Ion Transport across Grain Boundaries in Fast Lithium Ion Conducting Glass Ceramics" in "Functional Glasses: Properties And Applications for Energy and Information", H. Jain, Lehigh Univ.; C. Pantano, The Pennsylvania State Univ.; S. Ito, Tokyo Institute of Technology; K. Bange, Schott Glass (ret.); D. Morse, Corning Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/functional_glasses/7

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Functional Glasses: Properties And Applications for Energy and Information by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Authors

Bernhard Roling, Katharina I. Gries, Michael Gellert, Kerstin Volz, Fabio Rosciano, and Chihiro Yada

Ion Transport across Grain Boundaries in Fast Lithium Ion Conducting Glass Ceramics

Bernhard Roling, Michael Gellert

Department of Chemistry, University of Marburg **Katharina I. Gries, Kerstin Volz** Department of Physics, University of Marburg **Fabio Rosciano, Chihiro Yada** Advanced Technology Division, Toyota Motor Europe, Belgium

Solid-State Batteries

No separation of individual cells

 \rightarrow More compact packaging

http://www.toyota-global.com/innovation/ environmental_technology/ next_generation_secondary_batteries.html

Solid-State Batteries

Fig. 7 HAADF-STEM images of the interface between the $LiCoO_2$ or $Li_4Ti_5O_{12}$ active material and the solid electrolyte in the composite electrodes pressed at room temperature ((a) and (b)), and pressed at 210 °C ((c) and (d)).

Room-temperature ionic conductivity $\sigma \approx 10^{-3}$ S/cm

Tatsumisago and coworkers, J. Mater. Chem. 21 (2011) 118.

Coating of cathode with protective layer,

e.g. LiNbO₃ (thickness in the range of 10 nm)

Solid-State Li-S-Batteries with Li₂S-P₂S₅ Glass as Electrolyte

Tatsumisago and coworkers, Electrochim. Acta 56 (2011) 6055.

Fig. 3. Charge-discharge curves of all-solid-state cells of Li-In/80Li₂S·20P₂S₅ glass-ceramic/S using (a) (S + AB + SE), (b) (S - AB + SE), and (c) S-AB-SE electrodes as the working electrode.

At low charge/discharge rates, the battery capacity is close to the theoretical capacity.

Lithium-Air Batteries

 $O_2 + 2 Li \rightarrow Li_2O_2$ EMF $\approx 3.1 V$

theoretical energy density $\approx 3.6 \frac{\text{kWh}}{\text{kg Li}_2\text{O}_2}$

(comparable to mechanical energy from 1 kg gasoline)

Crystalline Fast Lithium-Ion Conductors

NASICON

 $Li_{1+x}Al_{x}Ge_{2-x}(PO_{4})_{3} (LAGP)$ $Li_{1+x}Al_{x}Ti_{2-x}(PO_{4})_{3} (LATP)$

Perovskite

Garnet

Brick Layer Model for Grain Boundary Ion Transport

Parallel gb conduction is only then relevant, if

- $\sigma_{gb} >> \sigma_{g}$ or
- D is comparable to d

Ref: R. Bouchet et al, J. Electrochem Soc 150 (2003) E348; J. Electroceram 16 (2000) 229.

N.J. Kidner, et al., J. Electroceram. 14 (2005) 283; 14 (2005) 293.

Parallel Grain Boundary Conduction in Lithium Ion Conductors

P. Heitjans,
S. Indris, *Phys. Cond. Mat.* **15** (2003) R1257.

Li₂O - B₂O₃ nanocomposite

Fast Li⁺ ion conduction at interfaces

P. Heitjans,
M. Masoud,
A. Feldhoff,
M. Wilkening, *Faraday Discuss.*134 (2007) 67.

(a) <u>5 nm</u>

Large amount of *amorphous* LiNbO₃ at the boundaries of the nanograins

If parallel grain boundary conduction is negligible:

Simple results for ratios of capacitances and resistances:

$$\frac{R_{g}}{R_{gb\perp}} = \frac{\sigma_{gb}}{\sigma_{g}} \cdot \frac{D}{d} \qquad \qquad \frac{C_{g}}{C_{gb\perp}} = \frac{\varepsilon_{g}}{\varepsilon_{gb}} \cdot \frac{d}{D}$$

Nano-Grain Composite Model

TEM Images of $Li_{1.5}Al_{0.5}Ge_{1.5}(PO_4)_3$ (LAGP)

Amorphous or low crystallinity phase

C. R. Mariappan, C. Yada, F. Rosciano, B. Roling, J. Power Sources 196 (2011) 6455.

(i) Existence of impurity phases (e.g. AlPO₄) and amorphous phases with low ionic conductivity

(ii) Contact area between grains is lower than assumed in the BLM

Impedance Spectrum of Li_{1.5}Al_{0.5}Ge_{1.5}(PO₄)₃ (LAGP)

Amorphous or low crystallinity phase

Grain Conductivity and Total Conductivity of LAGP

Grain conductivity

$$\sigma_{g} = \frac{1}{R_{g}} \left(\frac{d}{A}\right)$$

Total conductivity

$$\sigma_{t} = \frac{1}{\left(R_{g} + R_{gb}\right)} \left(\frac{d}{A}\right)$$

Grain and grain boundary resistance are almost identical.

Activation energies are identical.

Purely geometrical current constriction due to limited grain contact area

C. R. Mariappan, C. Yada, F. Rosciano, B. Roling, J. Power Sources 196 (2011) 6455.

Finite-Element Calculations by Fleig and Maier

J. Fleig, J. Maier, J. Am. Ceram. Soc 82 (1999) 3485.

$$\frac{R_{gb}}{R_g} \approx \frac{1}{\sqrt{4 \alpha}}$$

Fraction of contacted area $\alpha = A_{contact} / A_{grain}$

For LAGP:

$$R_{gb} \approx R_g \implies \alpha \approx 0.25$$

in reasonable agreement with TEM results

Impedance Spectroscopy on Ohara Glass Ceramic (commercial)

 $Li_{1+x}Al_{x}Ti_{2-x}(PO_{4})_{3}$ doped with various other oxides

Grain boundary resistance is more than one order of magnitude higher than grain resistance Arrhenius Plot of Grain and Grain Boundary Resistance

C. R. Mariappan, M. Gellert, F. Rosciano, C. Yada, B. Roling, Electrochem. Comm. 14 (2012) 25.

Ohara Glass Ceramic

Grain conductivity at room temperature:

$$\sigma_{\text{grain}} \approx 10^{-3} \text{ S/cm}$$

 $E_A^{grain} = 0.33 \text{ eV}$

Grain boundary conductivity at room temperature:

$$\sigma_{\text{grain boundary}} \approx 10^{-4} \text{ S/cm}$$

$$E_A^{\text{grain boundary}} = 0.36 \text{ eV}$$

Origin of higher activation energy of grain boundary conductivity? Space charge layers? Mechanical stresses?

Space Charge Model

- Charged gb core with oppositely charged space charge layer
- Space charge layer results in electrostatic barrier for ion transport;
 Important: Single barrier

Well established in the field of oxide ion conductors

Measurements with DC Bias on CeO_2 doped with 1% Y_2O_3

Figure 1. HRTEM of grain boundary in 1.0 mol $\%~Y_2O_3\text{-doped}~\text{CeO}_2$. The moiré rings are also visible.

Guo, Waser et al., Electrochem. Solid State Lett. 8 (2005) J1 and 8 (2005) E67.

Figure 3. Current *I* as a function of bias over one grain boundary η_{gb} (filled circles). For comparison the current *I*-applied bias U_{bias} relation is also plotted (open squares).

Height of space charge barrier: about 0.4 eV

High-Voltage Measurement System

Novocontrol Alpha-AK High Performance Frequency Analyser, equipped with:

- High-Voltage Amplifier Trek model 623B
- Novocontrol HVB4000 High-Voltage Impedance Interface

- Frequency range: 3 µHz 10 kHz
- Maximum amplitude of ac voltage: 2 kV
- Current resolution: 5 fA

Nonlinear Impedance Spectroscopy with High AC Voltages

- Almost 1 V ac voltage per single grain boundary can be applied without any irreversible changes of the grain boundary properties
- Grain boundary resistance decreases with increasing voltage

Grain Boundary Conductivity vs. AC Voltage per Single Grain Boundary

of the grain resistance

Influence of High Voltages on Ion Transport Across Grain Boundary

Influence of High Voltages on Ion Transport Across Grain Boundary

Estimation of Grain Boundary Thickness

HR-TEM Images of Grain Boundaries

Type-B Grain Boundary:

- Layer between grains with similar lattice orientation:
- High degree of crystallinity
- Mechanical stresses may lead to slighly higher activation energy
- Thickness: about 5-10 nm

Type-A Grain Boundary:

Amorphous layer between
grains with strongly
dissimilar lattice orientation
→ Highly resistive

Model for Grain Boundary Transport

Blue lines: Ion transport pathways

Conclusions

$Li_{1.5}Al_{0.5}Ge_{1.5}(PO_4)_3$ (LAGP)

• Grain and grain boundary resistance exhibit the same activation energy.

→ Purely geometrical current constriction; fraction of contacted area: about 25%

Ohara Glass Ceramic (Li_{1+x}Al_xTi_{2-x}(PO₄)₃ **doped with other oxides**)

- Grain boundary resistance exhibits a slightly higher activation energy than the grain resistance.
- Nonlinear impedance spectra provide strong indication that the grain boundary resistance is **not** caused by **a single (space charge) barrier**, but by **several serial barriers**
- Fit of nonlinear impedance data suggests that the **thickness of the grain boundaries is in the range 5-10 nm.**
- HR-TEM images reveal type-A (amorphous) and **type-B** (high degree of crystallinity) **grain boundaries**.
- Thickness of type-B grain boundaries is, in fact, in the range 5-10 nm. Mechanical stresses may lead to slightly higher activation energy.

Many thanks

for

your attention!