708 research outputs found

    Is the energy status influencing dispersion in American glass eel?

    Get PDF
    International audienceThe American eel has a facultative catadromous life cycle. Spawning occurs in Sargasso Sea and growth occurs into freshwater or saltwater habitats over a wide geographical range. The selection of suitable habitat for growth begins at the glass eel stage. Based on the hypothesis of conditional dispersion strategy, energetic status would determine whether glass eels would express freshwater or saltwater preference. Glass eels were captured from two rivers from Nova Scotia and two rivers from QuĂ©bec in 2011 and 2012. Following salinity preference experiments, glass eels were classified as “inactive” or as “active with preference for fresh water” and “active with preference for salt water”. They were anaesthetized in MS 222, weighed, measured and frozen in carbonic ice. Results indicate that glass eels expressing preference for freshwater had the highest condition factor. Total content of glycogen and lipids were measured in order to test whether or not the three groups of glass eels could be differentiated based on their energy status whatever the river and the year of fishing and results will be presented

    Life history and demographic determinants of effective/census size ratios as exemplified by brown trout (Salmo trutta)

    Get PDF
    A number of demographic factors, many of which related to human-driven encroachments, are predicted to decrease the effective population size (Ne) relative to the census population size (N), but these have been little investigated. Yet, it is necessary to know which factors most strongly impact Ne, and how to mitigate these effects through sound management actions. In this study, we use parentage analysis of a stream-living brown trout (Salmo trutta) population to quantify the effect of between-individual variance in reproductive success on the effective number of breeders (Nb) relative to the census number of breeders (Ni). Comprehensive estimates of the Nb/N ratio were reduced to 0.16–0.28, almost entirely due to larger than binomial variance in family size. We used computer simulations, based on empirical estimates of age-specific survival and fecundity rates, to assess the effect of repeat spawning (iteroparity) on Ne and found that the variance in lifetime reproductive success was substantially higher for repeat spawners. Random family-specific survival, on the other hand, acts to buffer these effects. We discuss the implications of these findings for the management of small populations, where maintaining high and stable levels of Ne is crucial to extenuate inbreeding and protect genetic variability.publishedVersio

    Spatio-temporal patterns in pelvic reduction in threespine stickleback (Gasterosteus aculeatus L.) in Lake Storvatnet

    Get PDF
    Questions: The pelvic girdle with associated spines is an integrated anti-predator defence apparatus, and is assumed to protect against piscivores in the threespine stickleback. On the other hand, it might be costly to produce the pelvic apparatus in ion-poor and mineralchallenging freshwater. Hypothesis: Stickleback with a reduced pelvic apparatus should use more shelter and be more nocturnal, avoiding predation risk. In contrast, stickleback with a well-developed pelvic apparatus should have reduced mortality during ontogeny in encounters with piscivores and thus have a longer expected lifespan. Given these two life-history strategies, we expect assortative mating as a result of divergent selection. Organism: Marine and freshwater threespine stickleback (Gasterosteus aculeatus L.). Places and times: Two representative ancestral marine populations and 36 freshwater populations in northwestern Norway (Lake Storvatnet, the main focus of the study, and three lakes downstream of it). Material was collected from 2006 to 2009. Analytical methods: We categorized nominal pelvic apparatus development (CPS morphs) in all fish, and measured metrics associated with these categories in a subsample. We also studied temporal, spatial, and habitat variation in the distribution of pelvic morphs in Lake Storvatnet. In this population, and downstream populations, we contrasted the detailed pelvic morphology with the measured genetic diversity (microsatellites), also estimating gene flow. In Lake Storvatnet, we tested for genetic divergence and signs of potential build-up of reproductive isolation via assortative mating among the observed nominal categories of pelvic reduction (CPS). Results: Pelvic reduction was seen only in Lake Storvatnet, where more than 50% of fish had a reduced pelvis. The distribution of pelvic morphs was stable over time and did not differ between habitats. The proportion of fish with pelvic reduction decreased with age. Freshwater stickleback tended to have a smaller pelvis than marine fish. The Lake Storvatnet stickleback were genetically differentiated from the downstream Lake Gjerhaugsvatn population, and both of these were different from the marine populations, with little gene flow among populations. No apparent genetic structure was found between CPS morphs within Lake Storvatnet. However, genetic factorial correspondence axes were significantly correlated with pelvic principal component axes in Lake Storvatnet, suggesting some phenotype × genetic association. Conclusion: The weak association between phenotypes and genetic structure observed in this study may reflect the build-up of early steps of reproductive isolation. Given time, such mechanisms may lead to the evolution of assortative mating, which may drive adaptive pelvic morphs (niche peaks), further resulting in genetically divergent populations and pelvic morphs

    The adaptive potential of subtropical rainbowfish in the face of climate change: heritability and heritable plasticity for the expression of candidate genes

    Get PDF
    Whilst adaptation and phenotypic plasticity might buffer species against habitat degradation associated with global climate change, few studies making such claims also possess the necessary and sufficient data to support them. Doing so requires demonstration of heritable variation in traits affecting fitness under new environmental conditions. We address this issue using an emerging aquatic system to study adaptation to climate change, the crimson-spotted rainbowfish (Melanotaenia duboulayi), a freshwater species from a region of eastern Australia projected to be affected by marked temperature increases. Captive born M. duboulayi of known pedigree were used to assess the long-term effects of contemporary and 2070-projected summer temperatures on the expression of genes previously identified in a climate change transcriptomics (RNA-Seq) experiment. Nearly all genes responded to increasing temperature. Significant additive genetic variance explained a moderate proportion of transcriptional variation for all genes. Most genes also showed broad-sense genetic variation in transcriptional plasticity. Additionally, molecular pathways of candidate genes co-occur with genes inferred to be under climate-mediated selection in wild M. duboulayi populations. Together, these results indicate the presence of existing variation in important physiological traits, and the potential for adaptive responses to a changing thermal environment.R.J. Scott McCairns, Steve Smith, Minami Sasaki, Louis Bernatchez and Luciano B. Beheregara

    Ecological speciation in European whitefish is driven by a large-gaped predator

    Get PDF
    Lake-dwelling fish that form species pairs/flocks characterized by body size divergence are important model systems for speciation research. Although several sources of divergent selection have been identified in these systems, their importance for driving the speciation process remains elusive. A major problem is that in retrospect, we cannot distinguish selection pressures that initiated divergence from those acting later in the process. To address this issue, we studied the initial stages of speciation in European whitefish (Coregonus lavaretus) using data from 358 populations of varying age (26-10,000 years). We find that whitefish speciation is driven by a large-growing predator, the northern pike (Esox lucius). Pike initiates divergence by causing a largely plastic differentiation into benthic giants and pelagic dwarfs: ecotypes that will subsequently develop partial reproductive isolation and heritable differences in gill raker number. Using an eco-evolutionary model, we demonstrate how pike's habitat specificity and large gape size are critical for imposing a between-habitat trade-off, causing prey to mature in a safer place or at a safer size. Thereby, we propose a novel mechanism for how predators may cause dwarf/giant speciation in lake-dwelling fish species.Peer reviewe

    Evidence for directional selection at a novel major histocompatibility class I marker in wild common frogs (Rana temporaria) exposed to a viral pathogen (Ranavirus).

    Get PDF
    (c) 2009 Teacher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Whilst the Major Histocompatibility Complex (MHC) is well characterized in the anuran Xenopus, this region has not previously been studied in another popular model species, the common frog (Rana temporaria). Nor, to date, have there been any studies of MHC in wild amphibian host-pathogen systems. We characterise an MHC class I locus in the common frog, and present primers to amplify both the whole region, and specifically the antigen binding region. As no more than two expressed haplotypes were found in over 400 clones from 66 individuals, it is likely that there is a single class I locus in this species. This finding is consistent with the single class I locus in Xenopus, but contrasts with the multiple loci identified in axolotls, providing evidence that the diversification of MHC class I into multiple loci likely occurred after the Caudata/Anura divergence (approximately 350 million years ago) but before the Ranidae/Pipidae divergence (approximately 230 mya). We use this locus to compare wild populations of common frogs that have been infected with a viral pathogen (Ranavirus) with those that have no history of infection. We demonstrate that certain MHC supertypes are associated with infection status (even after accounting for shared ancestry), and that the diseased populations have more similar supertype frequencies (lower F(ST)) than the uninfected. These patterns were not seen in a suite of putatively neutral microsatellite loci. We interpret this pattern at the MHC locus to indicate that the disease has imposed selection for particular haplotypes, and hence that common frogs may be adapting to the presence of Ranavirus, which currently kills tens of thousands of amphibians in the UK each year

    Potential Impact of Mediterranean Aquaculture on the Wild Predatory Bluefish

    Get PDF
    Aquaculture impacts on wild populations of fish have been considered principally due to farm escapes. The Bluefish Pomatomus saltatrix, which exhibits two distinct genetic units in the Mediterranean Sea, is a voracious predator and is attracted to aquaculture cages to prey on farmed fish, particularly Gilthead Seabream Sparus aurata and European Sea Bass Dicentrarchus labrax. We compared the genetic diversity of adult Bluefish caught inside one aquaculture farm located in Spanish waters of the western Mediterranean Sea with reference individuals of East and West Mediterranean stocks from the open sea. Bluefish were genetically assigned to their putative origin using seven microsatellite loci and mitochondrial cytochrome oxidase subunit I as molecular markers. As expected, most of the individuals caught from inside the fish farm cages were assigned to the local genetic population. However, between 7.14% and 11.9% of individuals were assigned to the distant and different genetic unit inhabiting Turkish waters, the East Mediterranean stock. The genetic membership of those individuals revealed some degree of interbreeding between the East and West Mediterranean Bluefish stocks. All results suggest that aquaculture acts as an attractor for Bluefish and could affect genetic diversity as well as phylogeography of this fish and maybe other similar species that aggregate around marine fish farms.We are very grateful to T. Ceyhan for providing the Bluefish samples from Turkey. The study was supported by the MICINN CGL-2009-08279 Grant (Spain) and the Asturian Grant GRUPIN2014-093. Laura Miralles held a PCTI Grant from the Asturias Regional Government, referenced BP 10-004. This is a contribution from the Marine Observatory of Asturias

    Multifaceted role of BTLA in the control of CD8+ T cell fate after antigen encounter

    Get PDF
    Purpose: Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes (TIL) has shown an overall clinical response rate 40%–50% in metastatic melanoma patients. BTLA (B-and-T lymphocyte associated) expression on transferred CD8+ TILs was associated with better clinical outcome. The suppressive function of the ITIM and ITSM motifs of BTLA is well described. Here, we sought to determine the functional characteristics of the CD8+BTLA+TIL subset and define the contribution of the Grb2 motif of BTLA in T-cell costimulation. Experimental Design: We determined the functional role and downstream signal of BTLA in both human CD8+ TILs and mouse CD8+ T cells. Functional assays were used including single-cell analysis, reverse-phase protein array (RPPA), antigen-specific vaccination models with adoptively transferred TCR-transgenic T cells as well as patient-derived xenograft (PDX) model using immunodeficient NOD-scid IL2Rgammanull (NSG) tumor-bearing mice treated with autologous TILs. Results: CD8+BTLA? TILs could not control tumor growth in vivo as well as their BTLA+ counterpart and antigen-specific CD8+BTLA? T cells had impaired recall response to a vaccine. However, CD8+BTLA+ TILs displayed improved survival following the killing of a tumor target and heightened “serial killing” capacity. Using mutants of BTLA signaling motifs, we uncovered a costimulatory function mediated by Grb2 through enhancing the secretion of IL-2 and the activation of Src after TCR stimulation. Conclusions: Our data portrays BTLA as a molecule with the singular ability to provide both costimulatory and coinhibitory signals to activated CD8+ T cells, resulting in extended survival, improved tumor control, and the development of a functional recall response. Clin Cancer Res; 23(20); 6151–64. ©2017 AACR

    Identification of physicochemical selective pressure on protein encoding nucleotide sequences

    Get PDF
    BACKGROUND: Statistical methods for identifying positively selected sites in protein coding regions are one of the most commonly used tools in evolutionary bioinformatics. However, they have been limited by not taking the physiochemical properties of amino acids into account. RESULTS: We develop a new codon-based likelihood model for detecting site-specific selection pressures acting on specific physicochemical properties. Nonsynonymous substitutions are divided into substitutions that differ with respect to the physicochemical properties of interest, and those that do not. The substitution rates of these two types of changes, relative to the synonymous substitution rate, are then described by two parameters, Îł and ω respectively. The new model allows us to perform likelihood ratio tests for positive selection acting on specific physicochemical properties of interest. The new method is first used to analyze simulated data and is shown to have good power and accuracy in detecting physicochemical selective pressure. We then re-analyze data from the class-I alleles of the human Major Histocompatibility Complex (MHC) and from the abalone sperm lysine. CONCLUSION: Our new method allows a more flexible framework to identify selection pressure on particular physicochemical properties

    Spatio-temporal Models of Lymphangiogenesis in Wound Healing

    Full text link
    Several studies suggest that one possible cause of impaired wound healing is failed or insufficient lymphangiogenesis, that is the formation of new lymphatic capillaries. Although many mathematical models have been developed to describe the formation of blood capillaries (angiogenesis), very few have been proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a markedly different process from angiogenesis, occurring at different times and in response to different chemical stimuli. Two main hypotheses have been proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic endothelial cells first pool in the wound region following the lymph flow and then, once sufficiently populated, start to form a network. Here we present two PDE models describing lymphangiogenesis according to these two different hypotheses. Further, we include the effect of advection due to interstitial flow and lymph flow coming from open capillaries. The variables represent different cell densities and growth factor concentrations, and where possible the parameters are estimated from biological data. The models are then solved numerically and the results are compared with the available biological literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total
    • 

    corecore