25 research outputs found
Different molecular bases underlie the mitochondrial respiratory activity in the homoeothermic spadices of Symplocarpus renifolius and the transiently thermogenic appendices of Arum maculatum
Symplocarpus renifolius and Arum maculatum are known to produce significant heat during the course of their floral development, but they use different regulatory mechanisms, i.e. homoeothermic compared with transient thermogenesis. To further clarify the molecular basis of species-specific thermogenesis in plants, in the present study we have analysed the native structures and expression patterns of the mitochondrial respiratory components in S. renifolius and A. maculatum. Our comparative analysis using Blue native PAGE combined with nano LC (liquid chromatography)-MS/MS (tandem MS) has revealed that the constituents of the respiratory complexes in both plants were basically similar, but that several mitochondrial components appeared to be differently expressed in their thermogenic organs. Namely, complex II in S. renifolius was detected as a 340 kDa product, suggesting an oligomeric or supramolecular structure in vivo. Moreover, the expression of an external NAD(P)H dehydrogenase was found to be higher in A. maculatum than in S. renifolius, whereas an internal NAD(P)H dehydrogenase was expressed at a similar level in both species. Alternative oxidase was detected as smear-like signals that were elongated on the first dimension with a peak at around 200 kDa in both species. The significance and implication of these data are discussed in terms of thermoregulation in plants
A novel functional element in the N-terminal region of Arum concinnatum alternative oxidase is indispensable for catalytic activity of the enzyme in HeLa cells
Alternative oxidase (AOX) is a quinol-oxygen oxidoreductase, which is known to possess a dicarboxylate diiron reaction center held in structurally postulated alpha-helical bundle. However, little is known about the structural or functional features of its N-terminal region in any organism, with the exception of a regulatory cysteine residue (CysI) in angiosperm plants. Here, we show that transcripts of two AOX1 isozymes (AcoAOX1a and AcoAOX1b) are coexpressed in thermogenic appendices of Arum concinnatum, while their enzymatic activities seem to be distinct. Namely, AcoAOX1a, an abundantly expressed transcript in vivo, shows an apparent cyanide-insensitive and n-propyl gallate-sensitive respiration during ectopic expression of the protein in HeLa cells, whereas AcoAOX1b exhibits a lower transcript expression, and appears to be totally inactive as AOX at the protein level. Our functional analyses further reveal that an E83K substitution in AcoAOX1b, which is located far upstream of CysI in the N-terminal region, is the cause of this loss of function. These results suggest the presence of a naturally occurring inactive AOX homologue in thermogenic plants. Accordingly, our results further imply that the N-terminal region of the AOX protein functionally contributes to the dynamic activities of respiratory control within the mitochondria.Yusuke Kakizaki, Roger S. Seymour, Kikukatsu It