97 research outputs found

    Embodiment and Presence in Virtual Reality After Stroke. A Comparative Study With Healthy Subjects

    Full text link
    [EN] The ability of virtual reality (VR) to recreate controlled, immersive, and interactive environments that provide intensive and customized exercises has motivated its therapeutic use after stroke. Interaction and bodily presence in VR-based interventions is usually mediated through virtual selves, which synchronously represent body movements or responses to events on external input devices. Embodied self-representations in the virtual world not only provide an anchor for visuomotor tasks, but their morphologies can have behavioral implications. While research has focused on the underlying subjective mechanisms of exposure to VR on healthy individuals, the transference of these findings to individuals with stroke is not evident and remains unexplored, which could affect the experience and, ultimately, the clinical effectiveness of neurorehabilitation interventions. This study determined and compared the sense of embodiment and presence elicited by a virtual environment under different perspectives and levels of immersion in healthy subjects and individuals with stroke. Forty-six healthy subjects and 32 individuals with stroke embodied a gender-matched neutral avatar in a virtual environment that was displayed in a first-person perspective with a head-mounted display and in a third-person perspective with a screen, and the participants were asked to interact in a virtual task for 10 min under each condition in counterbalanced order, and to complete two questionnaires about the sense of embodiment and presence experienced during the interaction. The sense of body-ownership, self-location, and presence were more vividly experienced in a first-person than in a third-person perspective by both healthy subjects (p < 0.001, eta(2)(p) = 0.212; p = 0.005, eta(2)(p) = 0.101; p = 0.001, eta(2)(p) = 0.401, respectively) and individuals with stroke (p = 0.019, eta(2)(p) = 0.070; p = 0.001, eta(2)(p) = 0.135; p = 0.014, eta(2)(p) = 0.077, respectively). In contrast, no agency perspective-related differences were found in any group. All measures were consistently higher for healthy controls than for individuals with stroke, but differences between groups only reached statistical significance in presence under the first-person condition (p < 0.010, eta(2)(p) = 0.084). In spite of these differences, the participants experienced a vivid sense of embodiment and presence in almost all conditions. These results provide first evidence that, although less intensively, embodiment and presence are similarly experienced by individuals who have suffered a stroke and by healthy individuals, which could support the vividness of their experience and, consequently, the effectiveness of VR-based interventions.This study was funded by Ministerio de EconomĂ­a y Competitividad of Spain (Project RTC-2017-6051-7 and Grant BES-2014-068218), FundaciĂł la MaratĂł de la TV3 (Grant 201701-10), and Universitat PolitĂšcnica de ValĂšncia (Grant PAID-10-18). We acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.Borrego, A.; Latorre, J.; Alcañiz Raya, ML.; Llorens RodrĂ­guez, R. (2019). Embodiment and Presence in Virtual Reality After Stroke. A Comparative Study With Healthy Subjects. Frontiers in Neurology. 10:1-8. https://doi.org/10.3389/fneur.2019.01061S1810Berlucchi, G., & Aglioti, S. (1997). The body in the brain: neural bases of corporeal awareness. Trends in Neurosciences, 20(12), 560-564. doi:10.1016/s0166-2236(97)01136-3Legrand, D. (2006). The Bodily Self: The Sensori-Motor Roots of Pre-Reflective Self-Consciousness. Phenomenology and the Cognitive Sciences, 5(1), 89-118. doi:10.1007/s11097-005-9015-6Arzy, S., Overney, L. S., Landis, T., & Blanke, O. (2006). Neural Mechanisms of Embodiment. Archives of Neurology, 63(7), 1022. doi:10.1001/archneur.63.7.1022De Vignemont, F. (2011). Embodiment, ownership and disownership. Consciousness and Cognition, 20(1), 82-93. doi:10.1016/j.concog.2010.09.004Giummarra, M. J., Gibson, S. J., Georgiou-Karistianis, N., & Bradshaw, J. L. (2008). Mechanisms underlying embodiment, disembodiment and loss of embodiment. Neuroscience & Biobehavioral Reviews, 32(1), 143-160. doi:10.1016/j.neubiorev.2007.07.001Ma, K., & Hommel, B. (2015). The role of agency for perceived ownership in the virtual hand illusion. Consciousness and Cognition, 36, 277-288. doi:10.1016/j.concog.2015.07.008Kilteni, K., Maselli, A., Kording, K. P., & Slater, M. (2015). Over my fake body: body ownership illusions for studying the multisensory basis of own-body perception. Frontiers in Human Neuroscience, 9. doi:10.3389/fnhum.2015.00141Clark, A., Kiverstein, J., & Vierkant, T. (Eds.). (2013). Decomposing the Will. doi:10.1093/acprof:oso/9780199746996.001.0001Frith, C. D., Blakemore, S.-J., & Wolpert, D. M. (2000). Abnormalities in the awareness and control of action. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 355(1404), 1771-1788. doi:10.1098/rstb.2000.0734BermĂșdez i Badia, S., Fluet, G. G., Llorens, R., & Deutsch, J. E. (2016). Virtual Reality for Sensorimotor Rehabilitation Post Stroke: Design Principles and Evidence. Neurorehabilitation Technology, 573-603. doi:10.1007/978-3-319-28603-7_28Perez-Marcos, D., Sanchez-Vives, M. V., & Slater, M. (2011). Is my hand connected to my body? The impact of body continuity and arm alignment on the virtual hand illusion. Cognitive Neurodynamics, 6(4), 295-305. doi:10.1007/s11571-011-9178-5IJsselsteijn, W. A., de Kort, Y. A. W., & Haans, A. (2006). Is This My Hand I See Before Me? The Rubber Hand Illusion in Reality, Virtual Reality, and Mixed Reality. Presence: Teleoperators and Virtual Environments, 15(4), 455-464. doi:10.1162/pres.15.4.455Banakou, D., Groten, R., & Slater, M. (2013). Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes. Proceedings of the National Academy of Sciences, 110(31), 12846-12851. doi:10.1073/pnas.1306779110Yee, N., & Bailenson, J. (2007). The Proteus Effect: The Effect of Transformed Self-Representation on Behavior. Human Communication Research, 33(3), 271-290. doi:10.1111/j.1468-2958.2007.00299.xSteed, A., Frlston, S., Lopez, M. M., Drummond, J., Pan, Y., & Swapp, D. (2016). An ‘In the Wild’ Experiment on Presence and Embodiment using Consumer Virtual Reality Equipment. IEEE Transactions on Visualization and Computer Graphics, 22(4), 1406-1414. doi:10.1109/tvcg.2016.2518135Colomer, C., Llorens, R., NoĂ©, E., & Alcañiz, M. (2016). Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. Journal of NeuroEngineering and Rehabilitation, 13(1). doi:10.1186/s12984-016-0153-6Laver, K. E., Lange, B., George, S., Deutsch, J. E., Saposnik, G., & Crotty, M. (2017). Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews. doi:10.1002/14651858.cd008349.pub4Llorens, R., Borrego, A., Palomo, P., Cebolla, A., NoĂ©, E., i Badia, S. B., & Baños, R. (2017). Body schema plasticity after stroke: Subjective and neurophysiological correlates of the rubber hand illusion. Neuropsychologia, 96, 61-69. doi:10.1016/j.neuropsychologia.2017.01.007Zeller, D., Gross, C., Bartsch, A., Johansen-Berg, H., & Classen, J. (2011). Ventral Premotor Cortex May Be Required for Dynamic Changes in the Feeling of Limb Ownership: A Lesion Study. Journal of Neuroscience, 31(13), 4852-4857. doi:10.1523/jneurosci.5154-10.2011Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). «Mini-mental state». Journal of Psychiatric Research, 12(3), 189-198. doi:10.1016/0022-3956(75)90026-6Romero, M., SĂĄnchez, A., MarĂ­n, C., Navarro, M. D., Ferri, J., & NoĂ©, E. (2012). Clinical usefulness of the Spanish version of the Mississippi Aphasia Screening Test (MASTsp): validation in stroke patients. NeurologĂ­a (English Edition), 27(4), 216-224. doi:10.1016/j.nrleng.2011.06.001Latorre, J., Llorens, R., Colomer, C., & Alcañiz, M. (2018). Reliability and comparison of Kinect-based methods for estimating spatiotemporal gait parameters of healthy and post-stroke individuals. Journal of Biomechanics, 72, 268-273. doi:10.1016/j.jbiomech.2018.03.008LlorĂ©ns, R., NoĂ©, E., Naranjo, V., Borrego, A., Latorre, J., & Alcañiz, M. (2015). Tracking Systems for Virtual Rehabilitation: Objective Performance vs. Subjective Experience. A Practical Scenario. Sensors, 15(3), 6586-6606. doi:10.3390/s150306586Slater, M., & Steed, A. (2000). A Virtual Presence Counter. Presence: Teleoperators and Virtual Environments, 9(5), 413-434. doi:10.1162/105474600566925Slater, M., Spanlang, B., Sanchez-Vives, M. V., & Blanke, O. (2010). First Person Experience of Body Transfer in Virtual Reality. PLoS ONE, 5(5), e10564. doi:10.1371/journal.pone.0010564Petkova, V. I., Khoshnevis, M., & Ehrsson, H. H. (2011). The Perspective Matters! Multisensory Integration in Ego-Centric Reference Frames Determines Full-Body Ownership. Frontiers in Psychology, 2. doi:10.3389/fpsyg.2011.00035Maselli, A., & Slater, M. (2013). The building blocks of the full body ownership illusion. Frontiers in Human Neuroscience, 7. doi:10.3389/fnhum.2013.00083Debarba, H. G., Molla, E., Herbelin, B., & Boulic, R. (2015). Characterizing embodied interaction in First and Third Person Perspective viewpoints. 2015 IEEE Symposium on 3D User Interfaces (3DUI). doi:10.1109/3dui.2015.7131728Burin, D., Livelli, A., Garbarini, F., Fossataro, C., Folegatti, A., Gindri, P., & Pia, L. (2015). Are Movements Necessary for the Sense of Body Ownership? Evidence from the Rubber Hand Illusion in Pure Hemiplegic Patients. PLOS ONE, 10(3), e0117155. doi:10.1371/journal.pone.0117155Post-stroke cognitive disorders TeasellR SalterK FaltynekP CotoiA EskesG Evidence-Based Review of Stroke Rehabilitatio

    Dynamic Gene Expression in the Human Cerebral Cortex Distinguishes Children from Adults

    Get PDF
    In comparison with other primate species, humans have an extended juvenile period during which the brain is more plastic. In the current study we sought to examine gene expression in the cerebral cortex during development in the context of this adaptive plasticity. We introduce an approach designed to discriminate genes with variable as opposed to uniform patterns of gene expression and found that greater inter-individual variance is observed among children than among adults. For the 337 transcripts that show this pattern, we found a significant overrepresentation of genes annotated to the immune system process (pFDR≅0). Moreover, genes known to be important in neuronal function, such as brain-derived neurotrophic factor (BDNF), are included among the genes more variably expressed in childhood. We propose that the developmental period of heightened childhood neuronal plasticity is characterized by more dynamic patterns of gene expression in the cerebral cortex compared to adulthood when the brain is less plastic. That an overabundance of these genes are annotated to the immune system suggests that the functions of these genes can be thought of not only in the context of antigen processing and presentation, but also in the context of nervous system development

    Neural correlates of a single-session massage treatment

    Get PDF
    The current study investigated the immediate neurophysiological effects of different types of massage in healthy adults using functional magnetic resonance imaging (fMRI). Much attention has been given to the default mode network, a set of brain regions showing greater activity in the resting state. These regions (i.e. insula, posterior and anterior cingulate, inferior parietal and medial prefrontal cortices) have been postulated to be involved in the neural correlates of consciousness, specifically in arousal and awareness. We posit that massage would modulate these same regions given the benefits and pleasant affective properties of touch. To this end, healthy participants were randomly assigned to one of four conditions: 1. Swedish massage, 2. reflexology, 3. massage with an object or 4. a resting control condition. The right foot was massaged while each participant performed a cognitive association task in the scanner. We found that the Swedish massage treatment activated the subgenual anterior and retrosplenial/posterior cingulate cortices. This increased blood oxygen level dependent (BOLD) signal was maintained only in the former brain region during performance of the cognitive task. Interestingly, the reflexology massage condition selectively affected the retrosplenial/posterior cingulate in the resting state, whereas massage with the object augmented the BOLD response in this region during the cognitive task performance. These findings should have implications for better understanding how alternative treatments might affect resting state neural activity and could ultimately be important for devising new targets in the management of mood disorders

    Somatosensory System Deficits in Schizophrenia Revealed by MEG during a Median-Nerve Oddball Task

    Get PDF
    Although impairments related to somatosensory perception are common in schizophrenia, they have rarely been examined in functional imaging studies. In the present study, magnetoencephalography (MEG) was used to identify neural networks that support attention to somatosensory stimuli in healthy adults and abnormalities in these networks in patient with schizophrenia. A median-nerve oddball task was used to probe attention to somatosensory stimuli, and an advanced, high-resolution MEG source-imaging method was applied to assess activity throughout the brain. In nineteen healthy subjects, attention-related activation was seen in a sensorimotor network involving primary somatosensory (S1), secondary somatosensory (S2), primary motor (M1), pre-motor (PMA), and paracentral lobule (PCL) areas. A frontal–parietal–temporal “attention network”, containing dorsal- and ventral–lateral prefrontal cortex (DLPFC and VLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), superior parietal lobule (SPL), inferior parietal lobule (IPL)/supramarginal gyrus (SMG), and temporal lobe areas, was also activated. Seventeen individuals with schizophrenia showed early attention-related hyperactivations in S1 and M1 but hypo-activation in S1, S2, M1, and PMA at later latency in the sensorimotor network. Within this attention network, hypoactivation was found in SPL, DLPFC, orbitofrontal cortex, and the dorsal aspect of ACC. Hyperactivation was seen in SMG/IPL, frontal pole, and the ventral aspect of ACC in patients. These findings link attention-related somatosensory deficits to dysfunction in both sensorimotor and frontal–parietal–temporal networks in schizophrenia

    The bodily social self: a link between phenomenal and narrative selfhood

    Get PDF
    The Phenomenal Self (PS) is widely considered to be dependent on body representations, whereas the Narrative Self (NS) is generally thought to rely on abstract cognitive representations. The concept of the Bodily Social Self (BSS) might play an important role in explaining how the high level cognitive self-representations enabling the NS might emerge from the bodily basis of the PS. First, the phenomenal self (PS) and narrative self (NS), are briefly examined. Next, the BSS is defined and its potential for explaining aspects of social cognition is explored. The minimal requirements for a BSS are considered, before reviewing empirical evidence regarding the development of the BSS over the first year of life. Finally, evidence on the involvement of the body in social distinctions between self and other is reviewed to illustrate how the BSS is affected by both the bottom up effects of multisensory stimulation and the top down effects of social identification

    Interoception in anxiety and depression

    Get PDF
    We review the literature on interoception as it relates to depression and anxiety, with a focus on belief, and alliesthesia. The connection between increased but noisy afferent interoceptive input, self-referential and belief-based states, and top-down modulation of poorly predictive signals is integrated into a neuroanatomical and processing model for depression and anxiety. The advantage of this conceptualization is the ability to specifically examine the interface between basic interoception, self-referential belief-based states, and enhanced top-down modulation to attenuate poor predictability. We conclude that depression and anxiety are not simply interoceptive disorders but are altered interoceptive states as a consequence of noisily amplified self-referential interoceptive predictive belief states

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Postoperatieve zorg na parodontale chirurgie

    No full text
    • 

    corecore