9 research outputs found

    Generating a synthetic diffusion tensor dataset

    Get PDF
    During the last years, many techniques for de-noising, segmentation and fiber-tracking have been applied to diffusion tensor MR image data (DTI) from human and animal brains. However, evaluating such methods may be difficult on these data since there is no gold standard regarding the true geometry of the brain anatomy or fiber bundles reconstructed in each particular case. In order to study, validate and compare various de-noising and fiber-tracking methods, there is a need for a (mathematical) phantom consisting of semi-realistic images with well-known properties. In this work we generate such a phantom and provide a description of the calculation process all the way up to voxel-wise diffusion tensor visualization

    Two-tensor Fiber Tractography

    Get PDF
    Estimating white matter fiber pathways from a diffusion tensor MRI dataset has many important applications in medical research. However, the standard approach of performing tracking on single-tensor estimates per voxel is confounded by regions of multiple pathways in different directions. Building on previous work for estimating multiple tensors from MR value partitioning, we present here a two-tensor fiber tractography method that estimates two tensors from the acquired MR values, interpolated at each step of the path, and follows the tensor most aligned with the current direction. The method is verified on a synthetic dataset and applied to two locations of fiber crossing in an in vivo diffusion MR

    Shape-Adaptive DCT for Denoising of 3D Scalar and Tensor Valued Images

    Get PDF
    During the last ten years or so, diffusion tensor imaging has been used in both research and clinical medical applications. To construct the diffusion tensor images, a large set of direction sensitive magnetic resonance image (MRI) acquisitions are required. These acquisitions in general have a lower signal-to-noise ratio than conventional MRI acquisitions. In this paper, we discuss computationally effective algorithms for noise removal for diffusion tensor magnetic resonance imaging (DTI) using the framework of 3-dimensional shape-adaptive discrete cosine transform. We use local polynomial approximations for the selection of homogeneous regions in the DTI data. These regions are transformed to the frequency domain by a modified discrete cosine transform. In the frequency domain, the noise is removed by thresholding. We perform numerical experiments on 3D synthetical MRI and DTI data and real 3D DTI brain data from a healthy volunteer. The experiments indicate good performance compared to current state-of-the-art methods. The proposed method is well suited for parallelization and could thus dramatically improve the computation speed of denoising schemes for large scale 3D MRI and DTI

    Identification of common variants associated with human hippocampal and intracranial volumes

    No full text
    Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer\u27s disease(1,2) and is reduced in schizophrenia(3), major depression(4) and mesial temporal lobe epilepsy(5). Whereas many brain imaging phenotypes are highly heritable(6,7), identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 x 10(-16)) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 x 10(-12)). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 x 10(-7))

    Identification of common variants associated with human hippocampal and intracranial volumes

    Get PDF
    Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer's disease1, 2 and is reduced in schizophrenia3, major depression4 and mesial temporal lobe epilepsy5. Whereas many brain imaging phenotypes are highly heritable6, 7, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10−16) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10−12). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10−7)
    corecore