130 research outputs found

    EC 11481-2303 - A Peculiar Subdwarf OB Star Revisited

    Full text link
    EC 11481-2303 is a peculiar, hot, high-gravity pre-white dwarf. Previous optical spectroscopy revealed that it is a sdOB star with an effective temperature (Teff) of 41790 K, a surface gravity log(g)= 5.84, and He/H = 0.014 by number. We present an on-going spectral analysis by means of non-LTE model-atmosphere techniques based on high-resolution, high-S/N optical (VLT-UVES) and ultraviolet (FUSE, IUE) observations. We are able to reproduce the optical and UV observations simultaneously with a chemically homogeneous NLTE model atmosphere with a significantly higher effective temperature and lower He abundance (Teff = 55000 K, log (g) = 5.8, and He / H = 0.0025 by number). While C, N, and O appear less than 0.15 times solar, the iron-group abundance is strongly enhanced by at least a factor of ten.Comment: 8 pages, 11 figure

    Surgical Management of Benign Adnexal Masses in the Pediatric/Adolescent Population: An 11-Year Review

    Get PDF
    Study Objective The purpose of this study was to compare ovarian conservation rates and surgical approach in benign adnexal surgeries performed by surgeons vs gynecologists at a tertiary care institution. Design A retrospective cohort review. Setting Children's and adult tertiary care university-based hospital. Participants Patients 21 years of age and younger who underwent surgery for an adnexal mass from January 2003 through December 2013. Interventions Patient age, demographic characteristics, menarchal status, clinical symptoms, radiologic imaging, timing of surgery, surgeon specialty, mode of surgery, rate of ovarian conservation, and pathology were recorded. Patients were excluded if they had a uterine anomaly or pathology-proven malignancy. Main Outcome Measures The primary outcome was the rate of ovarian conservation relative to surgical specialty; secondary outcome was surgical approach relative to surgical specialty. Results Of 310 potential cases, 194 met inclusion criteria. Gynecologists were more likely than surgeons to conserve the ovary (80% vs 63%; odds ratio, 2.28; 95% confidence interval, 1.16-4.48). After adjusting for age, body mass index, mass size, and urgency of surgery, the difference was attenuated (adjusted odds ratio, 1.84; 95% confidence interval, 0.88-3.84). Surgeons and gynecologists performed minimally invasive surgery at similar rates (62% vs 50%; P = .11). A patient was more likely to receive surgery by a gynecologist if she was older (P < .001) and postmenarchal (P = .005). Conclusion Results of our study suggest that gynecologists are more likely to perform ovarian-conserving surgery. However, our sample size precluded precise estimates in our multivariable model. Educational efforts among all pediatric and gynecologic surgeons should emphasize ovarian conservation and fertility preservation whenever possible

    Immune-mediated loss of transgene expression from virally transduced brain cells is irreversible, mediated by IFNγ, perforin, and TNFα, and due to the elimination of transduced cells

    Get PDF
    The adaptive immune response to viral vectors reduces vector-mediated transgene expression from the brain. It is unknown, however, whether this loss is caused by functional downregulation of transgene expression or death of transduced cells. Herein, we demonstrate that during the elimination of transgene expression, the brain becomes infiltrated with CD4 and CD8 T cells and that these T cells are necessary for transgene elimination. Further, the loss of transgene-expressing brain cells fails to occur in the absence of IFNγ, perforin, and TNFα receptor. Two methods to induce severe immune suppression in immunized animals also fail to restitute transgene expression, demonstrating the irreversibility of this process. The need for cytotoxic molecules and the irreversibility of the reduction in transgene expression suggested to us that elimination of transduced cells is responsible for the loss of transgene expression. A new experimental paradigm that discriminates between downregulation of transgene expression and the elimination of transduced cells demonstrates that transduced cells are lost from the brain upon the induction of a specific antiviral immune response. We conclude that the anti-adenoviral immune response reduces transgene expression in the brain through loss of transduced cellsFil: Zirger, Jeffrey M.. Cedars Sinai Medical Center; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados UnidosFil: Puntel, Mariana. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bergeron, Josee. Cedars Sinai Medical Center; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados UnidosFil: Wibowo, Mia. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados UnidosFil: Moridzadeh, Rameen. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados UnidosFil: Bondale, Niyati. Cedars Sinai Medical Center; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados UnidosFil: Barcia, Carlos. Cedars Sinai Medical Center; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados UnidosFil: Kroeger, Kurt M.. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados UnidosFil: Liu, Chunyan. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados UnidosFil: Castro, Maria Graciela. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados Unidos. University of Michigan; Estados UnidosFil: Lowenstein, Pedro R.. Cedars Sinai Medical Center; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados Unidos. University of Michigan; Estados Unido

    Ubiquitous outflows in DEEP2 spectra of star-forming galaxies at z=1.4

    Full text link
    Galactic winds are a prime suspect for the metal enrichment of the intergalactic medium and may have a strong influence on the chemical evolution of galaxies and the nature of QSO absorption line systems. We use a sample of 1406 galaxy spectra at z~1.4 from the DEEP2 redshift survey to show that blueshifted Mg II 2796, 2803 A absorption is ubiquitous in starforming galaxies at this epoch. This is the first detection of frequent outflowing galactic winds at z~1. The presence and depth of absorption are independent of AGN spectral signatures or galaxy morphology; major mergers are not a prerequisite for driving a galactic wind from massive galaxies. Outflows are found in coadded spectra of galaxies spanning a range of 30x in stellar mass and 10x in star formation rate (SFR), calibrated from K-band and from MIPS IR fluxes. The outflows have column densities of order N_H ~ 10^20 cm^-2 and characteristic velocities of ~ 300-500 km/sec, with absorption seen out to 1000 km/sec in the most massive, highest SFR galaxies. The velocities suggest that the outflowing gas can escape into the IGM and that massive galaxies can produce cosmologically and chemically significant outflows. Both the Mg II equivalent width and the outflow velocity are larger for galaxies of higher stellar mass and SFR, with V_wind ~ SFR^0.3, similar to the scaling in low redshift IR-luminous galaxies. The high frequency of outflows in the star-forming galaxy population at z~1 indicates that galactic winds occur in the progenitors of massive spirals as well as those of ellipticals. The increase of outflow velocity with mass and SFR constrains theoretical models of galaxy evolution that include feedback from galactic winds, and may favor momentum-driven models for the wind physics.Comment: Accepted by ApJ. 25 pages, 17 figures. Revised to add discussions of intervening absorbers and AGN-driven outflows; conclusions unchange

    NYESO-1/LAGE-1s and PRAME Are Targets for Antigen Specific T Cells in Chondrosarcoma following Treatment with 5-Aza-2-Deoxycitabine

    Get PDF
    Chondrosarcoma has no proven systemic option in the metastatic setting. The development of a non-cross-resistant strategy, such as cellular immunotherapy using antigen-specific T cells would be highly desirable. NY-ESO-1 and PRAME are members of the Cancer Testis Antigen (CTA) family that have been identified as promising targets for T cell therapy. LAGE-1 is a cancer testis antigen 90% homologous to NY-ESO-1, sharing the 157-165 A*0201 NY-ESO-1 epitope with its transcript variant, LAGE-1s. A number of CTA's have been induced using 5-Aza-2-Deoxycitabine (5-Aza-dC) in other cancers. We sought to evaluate the feasibility of targeting chondrosarcoma tumors using NY-ESO-1/LAGE-1s and PRAME specific T cells using 5-Aza-dC to induce antigen expression.We used 11 flash frozen tumors from the University of Washington tumor bank to test for the expression of NY-ESO-1, PRAME, LAGE-1s and LAGE-1L in chondrosarcoma tumors. Using four chondrosarcoma cell lines we tested the expression of these CTA's with and without 5-Aza-dC treatments. Finally, using NY-ESO-1/LAGE-1s and PRAME specific effectors that we generated from sarcoma patients, we evaluated the ability of these T cells to lyse A*0201 expressing chondrosarcoma cell lines in vitro both with and without 5-Aza-dC treatment.A minority (36%) of chondrosarcoma tumors expressed either NY-ESO-1 or LAGE-1s at >10% of our reference value and none expressed PRAME at that level. However, in all four of the chondrosarcoma cell lines tested, NY-ESO-1 and PRAME expression could be induced following treatment with 5-Aza-dC including in cell lines where expression was absent or barely detectable. Furthermore, NY-ESO-1/LAGE-1s and PRAME specific CD8+ effector T cells were able to specifically recognize and lyse A*0201 expressing chondrosarcoma cell lines following 5-Aza-dC treatment.These data suggest that adoptive immunotherapy in combination with 5-Aza-dC may be a potential strategy to treat unresectable or metastatic chondrosarcoma patients where no proven systemic therapies exist

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    • …
    corecore