695 research outputs found

    The Glass is Half-Full: Overestimating the Quality of a Novel Environment is Advantageous

    Get PDF
    According to optimal foraging theory, foraging decisions are based on the forager's current estimate of the quality of its environment. However, in a novel environment, a forager does not possess information regarding the quality of the environment, and may make a decision based on a biased estimate. We show, using a simple simulation model, that when facing uncertainty in heterogeneous environments it is better to overestimate the quality of the environment (to be an “optimist”) than underestimate it, as optimistic animals learn the true value of the environment faster due to higher exploration rate. Moreover, we show that when the animal has the capacity to remember the location and quality of resource patches, having a positively biased estimate of the environment leads to higher fitness gains than having an unbiased estimate, due to the benefits of exploration. Our study demonstrates how a simple model of foraging with incomplete information, derived directly from optimal foraging theory, can produce well documented complex space-use patterns of exploring animals

    In-Context Learning on a Budget: A Case Study in Named Entity Recognition

    Full text link
    Few shot in-context learning (ICL) typically assumes access to large annotated training sets. However, in many real world scenarios, such as domain adaptation, there is only a limited budget to annotate a small number of samples, with the goal of maximizing downstream performance. We study various methods for selecting samples to annotate within a predefined budget, specifically focusing on the named entity recognition (NER) task, which has real-world applications, is expensive to annotate, and is relatively less studied in ICL setups. Across different models and datasets, we find that a relatively small pool of annotated samples can achieve results comparable to using the entire training set. Moreover, we discover that random selection of samples for annotation yields surprisingly good performance. Finally, we observe that a diverse annotation pool is correlated with improved performance. We hope that future work adopts our realistic paradigm which takes annotation budget into account

    Effects of Wind Turbine Noise on Songbird Behavior During Nonbreeding Season

    Get PDF
    Anthropogenic noise is one of the fastest growing, globally widespread pollutants, affecting countless species worldwide. Despite accumulating evidence of the negative impacts of wind turbines on wildlife, little is known about how the noise they generate affects ecological systems. Songbirds may be susceptible to noise pollution due to their reliance on vocal communication and thus, in this field study, we examined how songbirds are affected by wind turbine noise. We broadcasted noise produced by one wind turbine in a migratory stopover site during the nonbreeding season. Throughout the study, we repeatedly monitored the acoustic environment and songbird community before, during, and after the noise treatments with passive acoustic monitoring and mist netting. We employed generalized linear mixed effects models to assess the impact of experimental noise treatment on birds behavior and likelihood ratio tests to compare models with variables of interest with null models. The daily number of birds in the presence of wind turbine noise decreased by approximately 30% compared with the before and after phases. This reduction had a significant spatial pattern; the largest decrease was closer to the speaker and on its downwind side, fitting measured sound propagation. Although we found no impact on species diversity, two out of three most common species showed clear avoidance behavior: 45% and 36% decrease in abundance for the lesser whitethroat (Sylvia curruca) and Sardinian warbler (Sylvia melanocephala momus), respectively. In the after phase, there were lingering effects on the lesser whitethroat. The age structure of the lesser whitethroat population was affected because only juvenile birds showed avoidance behavior. No difference in avoidance extent was found between migratory and nonmigratory species, but the impacts of displacement on migrants during stopover are especially troubling from a conservation perspective. Our results stress the need to address the impacts of noise pollution on wildlife when planning noise-generating infrastructures, such as wind turbines, to allow for sustainable development without threatening already declining songbird populations

    Exploration and Exploitation of Victorian Science in Darwin's Reading Notebooks

    Get PDF
    Search in an environment with an uncertain distribution of resources involves a trade-off between exploitation of past discoveries and further exploration. This extends to information foraging, where a knowledge-seeker shifts between reading in depth and studying new domains. To study this decision-making process, we examine the reading choices made by one of the most celebrated scientists of the modern era: Charles Darwin. From the full-text of books listed in his chronologically-organized reading journals, we generate topic models to quantify his local (text-to-text) and global (text-to-past) reading decisions using Kullback-Liebler Divergence, a cognitively-validated, information-theoretic measure of relative surprise. Rather than a pattern of surprise-minimization, corresponding to a pure exploitation strategy, Darwin's behavior shifts from early exploitation to later exploration, seeking unusually high levels of cognitive surprise relative to previous eras. These shifts, detected by an unsupervised Bayesian model, correlate with major intellectual epochs of his career as identified both by qualitative scholarship and Darwin's own self-commentary. Our methods allow us to compare his consumption of texts with their publication order. We find Darwin's consumption more exploratory than the culture's production, suggesting that underneath gradual societal changes are the explorations of individual synthesis and discovery. Our quantitative methods advance the study of cognitive search through a framework for testing interactions between individual and collective behavior and between short- and long-term consumption choices. This novel application of topic modeling to characterize individual reading complements widespread studies of collective scientific behavior.Comment: Cognition pre-print, published February 2017; 22 pages, plus 17 pages supporting information, 7 pages reference

    Experimentally Broadcasted Wind-Turbine Sound Drastically Alters Songbirds\u27 Habitat Selection and Vocal Communication in a Natural Environment

    Get PDF
    The sound of wind turbines is a potential threat to songbirds, who use vocal communication to transfer information and rely on acoustic cues from the environment. Previous studies have shown decreased bird density around wind-farms, but the exact causes for this decline have not yet been fully recognized. We investigated the effects of wind-turbine sound on songbird populations by deploying a Phantom Turbine : broadcasting wind-turbine sound (102dB) at a site without actual turbines. We conducted the experiment in cycles of three stages: \u27before\u27, \u27noise-treatment\u27, and \u27after\u27. We monitored birds\u27 abundance using mist-netting and recorded freely-flying birds\u27 communication and background noise levels using calibrated automated recorders. Wind turbine noise caused a significant decrease of approximately 45% in the mean number of Sardinian Warblers (Corruca melanocephala momus) and a significant reduction in the number of detected calls compared to the control stages. The broadcasted sound overlapped birds\u27 known hearing range and measured vocalization frequency range, providing possible explanations for birds\u27 avoidance. These findings provide evidence of a strong negative impact of wind-turbine sound on habitat selection and vocal communication in a songbird population, emphasizing the need to consider noise impacts when planning wind farms or other noisy infrastructures in natural environments

    Scenarios of habitat management options to reduce predator impacts on nesting waders

    Get PDF
    1. Wetland ecosystems throughout the world are threatened by drainage and intensification of agriculture. Consequently, many wetland species of conservation concern are now restricted to fewer and smaller sites, and maintaining these species often requires intensive habitat management.  2. In Western Europe, breeding wader populations have declined severely as a result of wetland degradation, but very high levels of predation on eggs and chicks are now preventing population recovery. Wet grassland management for breeding waders has focussed on providing suitable nesting habitats, but the potential for management of landscape features to influence predation rates is largely unknown.  3. Using a 7-year study of breeding lapwing, Vanellus vanellus, and redshank, Tringa totanus, we first identify features that influence nest predation, and then use this information to compare the magnitude of change in nest predation rates that could potentially result from future landscape management scenarios.  4. As lapwing nest predation rates are higher (a) in fields further from patches of tall vegetation, (b) close (<50 m) to field edges in wet fields, (c) further from field edges in dry fields and (d) in areas of low lapwing nesting density, we modelled a series of realistic scenarios in which the area of tall vegetation and the extent and distribution of surface water were varied across the reserve, in order to quantify the magnitude of change in nest predation rate that could potentially have been achieved through management.  5. Modelled scenarios of changes in surface water and area of tall vegetation indicated that reduced surface flooding combined with removal of tall vegetation could result in significant increases in lapwing nest predation rates in areas with low nesting densities and nests in field centres. By contrast a ~20% reduction in nest predation, corresponding to ~100 more chicks hatching per year, is predicted in scenarios with expansion of tall vegetation in areas with high lapwing nest density and nests close to field edges.  6. Synthesis and applications: These management scenarios suggest that, for breeding waders in wet grassland landscapes, creating areas of tall vegetation and concentrating surface flooding (to encourage high nesting densities and influence nesting distribution) can potentially help to reduce the unsustainably high levels of nest predation that are preventing population recovery

    Look before you leap: is risk of injury a foraging cost?

    Get PDF
    Theory states that an optimal forager should exploit a patch so long as its harvest rate of resources from the patch exceeds its energetic, predation, and missed opportunity costs for foraging. However, for many foragers, predation is not the only source of danger they face while foraging. Foragers also face the risk of injuring themselves. To test whether risk of injury gives rise to a foraging cost, we offered red foxes pairs of depletable resource patches in which they experienced diminishing returns. The resource patches were identical in all respects, save for the risk of injury. In response, the foxes exploited the safe patches more intensively. They foraged for a longer time and also removed more food (i.e., had lower giving up densities) in the safe patches compared to the risky patches. Although they never sustained injury, video footage revealed that the foxes used greater care while foraging from the risky patches and removed food at a slower rate. Furthermore, an increase in their hunger state led foxes to allocate more time to foraging from the risky patches, thereby exposing themselves to higher risks. Our results suggest that foxes treat risk of injury as a foraging cost and use time allocation and daring—the willingness to risk injury—as tools for managing their risk of injury while foraging. This is the first study, to our knowledge, which explicitly tests and shows that risk of injury is indeed a foraging cost. While nearly all foragers may face an injury cost of foraging, we suggest that this cost will be largest and most important for predators

    Why do top predators engage in superpredation? FRom an empirical scenario to a theoretical framework

    Get PDF
    Lethal interactions can shape ecosystem structure, and consequently understanding their causes is ecologically relevant. To improve both empirical and theoretical knowledge on superpredation (i.e. predation on high-order predators), we studied an eagle owl population, including its main prey and mesopredators, and then we crossed these results with existing theories to provide a reasoning framework. We ftted our feld data into four main causes explaining lethal interactions: food stress, opportunistic superpredation, removal of a competitor, and removal of a potential threat. Empirically, superpredation seemed to be mostly determined by the combination of the food-stress and opportunistic-superpredation hypotheses, which highlights the complexity of the factors triggering superpredation. Therefore, besides being a response to lower food availability, superpredation may also represent an effective mechanism to remove potential predators and/or competitors, either intentionally or not. Our theoretical framework focused on the decision-making process in superpredation, considering four inter-related stages: encountering; attacking; and capturing a mesopredator; as well as consuming a mesopredator once killed. Superpredation almost certainly results from a complex process of decision-making, accounting for costs and benefts assessed moment-to-moment and for each mesopredator individual. It is time to build bridges between theoretical and empirical studies to further understand the mechanisms driving complex interactions among top predators and mesopredators

    Conservation practitioners’ and researchers’ needs for bridging the knowledge–action gap

    Get PDF
    In the field of biodiversity conservation, there is a growing need for research to translate to real-world impacts. Currently there exists a gap between research outcomes and on the ground action, commonly referred to as the knowledge-action gap. Previous research has focused on identifying the causes of the gap, but less research has focused on how to bridge it. We conducted an online survey with conservation researchers and practitioners to identify barriers in the science-to application pipeline and to understand how potential solutions would need to account for their information needs and workflows. Through a qualitative analysis of the open-ended survey responses, we found that information about tools and approaches to address conservation challenges is needed, but decision makers also need information to help them account for context specific barriers and opportunities. Solution-specific information alone, however, is often insufficient for practitioners, who also require the resource capacity and capable personnel to work with that information. Word of mouth and scholarly databases are the most common ways of learning about new tools and techniques, but lack of time, funding and personnel are barriers to implementing them. In addition, respondents identified a need for increased engagement with the conservation social sciences. We argue that a user-centered design approach should underpin any proposed solution to the gap and suggest that an online tool could be one effective solution
    corecore