162 research outputs found

    Calcium Electroporation Reduces Viability and Proliferation Capacity of Four Uveal Melanoma Cell Lines in 2D and 3D Cultures

    Get PDF
    Electrochemotherapy (ECT) is the combination of transient pore formation following electric pulse application with the administration of cytotoxic drugs, which enhances the cytotoxic effect of the applied agent due to membrane changes and permeabilization. Although EP represents an established therapeutic option for solid malignancies, recent advances shift to the investigation of non cytotoxic agents, such as calcium, which can also induce cell death. The present study aims to evaluate the cytotoxic effect, the morphological changes in tumor spheroids, the effect on the cell viability, and the cell-specific growth rate following calcium electroporation (CaEP) in uveal melanoma (UM) 2D monolayer cell cultures as well as in 3D tumor spheroid models. The experiments were conducted in four cell lines, UM92.1, Mel270, and two primary UM cell lines, UPMD2 and UPMM3 (UPM). The 2D and 3D UM cell cultures were electroporated with eight rectangular pulses (100 ”s pulse duration, 5 Hz repetition frequency) of a 1000 V/cm pulse strength alone or in combination with 0.11 mg/mL, 0.28 mg/mL, 0.55 mg/mL or 1.11 mg/mL calcium chloride or 1.0 ”g/mL or 2.5 ”g/mL bleomycin. The application of calcium chloride alone induced an ATP reduction only in the UM92.1 2D cell cultures. Calcium alone had no significant effect on ATP levels in all four UM spheroids. A significant decrease in the intracellular adenosine triphosphate (ATP) level was documented in all four 2D and 3D cell cultures for both CaEP as well as ECT with bleomycin. The results suggest a dose-dependent ATP depletion with a wide range of sensitivity among the tested UM cell lines, control groups, and the applied settings in both 2D monolayer cell cultures and 3D tumor spheroid models. The colony formation capacity of the cell lines after two weeks reduced significantly after CaEP only with 0.5 mg/mL and 1.1 mg/mL, whereas the same effect could be achieved with both applied bleomycin concentrations, 1.0 ”g/mL and 2.5 ”g/mL, for the ECT group. The specific growth rate on day 7 following CaEP was significantly reduced in UM92.1 cell lines with 0.5 and 1.1 mg/mL calcium chloride, while Mel270 showed a similar effect only after administration of 1.1 mg/mL. UM92.1 and Mel270 spheroids exhibited lower adhesion and density after CaEP on day three in comparison to UPM spheroids showing detachment after day 7 following treatment. CaEP and bleomycin electroporation significantly reduce cell viability at similar applied voltage settings. CaEP may be a feasible and inexpensive therapeutic option for the local tumor control with fewer side effects, in comparison to other chemotherapeutic agents, for the treatment of uveal melanoma. The limited effect on normal cells and the surrounding tissue has already been investigated, but further research is necessary to clarify the effect on the surrounding tissue and to facilitate its application in a clinical setting for the eye

    Synthetic transactivation screening reveals ETV4 as broad coactivator of hypoxia-inducible factor signaling

    Get PDF
    The human prolyl-4-hydroxylase domain (PHD) proteins 1-3 are known as cellular oxygen sensors, acting via the degradation of hypoxia-inducible factor (HIF) α-subunits. PHD2 and PHD3 genes are inducible by HIFs themselves, suggesting a negative feedback loop that involves PHD abundance. To identify novel regulators of the PHD2 gene, an expression array of 704 transcription factors was screened by a method that allows distinguishing between HIF-dependent and HIF-independent promoter regulation. Among others, the E-twenty six transcription factor ETS translocation variant 4 (ETV4) was found to contribute to PHD2 gene expression particularly under hypoxic conditions. Mechanistically, complex formation between ETV4 and HIF-1/2α was observed by mammalian two-hybrid and fluorescence resonance energy transfer analysis. HIF-1α domain mapping, CITED2 overexpression and factor inhibiting HIF depletion experiments provided evidence for cooperation between HIF-1α and p300/CBP in ETV4 binding. Chromatin immunoprecipitation confirmed ETV4 and HIF-1α corecruitment to the PHD2 promoter. Of 608 hypoxically induced transcripts found by genome-wide expression profiling, 7.7% required ETV4 for efficient hypoxic induction, suggesting a broad role of ETV4 in hypoxic gene regulation. Endogenous ETV4 highly correlated with PHD2, HIF-1/2α and several established markers of tissue hypoxia in 282 human breast cancer tissue samples, corroborating a functional interplay between the ETV4 and HIF pathway

    Chick Chorioallantoic Membrane as a Patient-Derived Xenograft Model for Uveal Melanoma : Imaging Modalities for Growth and Vascular Evaluation

    Get PDF
    Background: Patient-derived tumor xenografts (PDXs) have emerged as valuable preclinical in vivo models in oncology as they largely retain the polygenomic architecture of the human tumors from which they originate. Although animal models are accompanied by cost and time constraints and a low engraftment rate, PDXs have primarily been established in immunodeficient rodent models for the in vivo assessment of tumor characteristics and of novel therapeutic cancer targets. The chick chorioallantoic membrane (CAM) assay represents an attractive alternative in vivo model that has long been used in the research of tumor biology and angiogenesis, and can overcome some of these limitations. Methods: In this study, we reviewed different technical approaches for the establishment and monitoring of a CAM-based uveal melanoma PDX model. Forty-six fresh tumor grafts were acquired after enucleation from six uveal melanoma patients and were implanted onto the CAM on ED7 with Matrigel and a ring (group 1), with Matrigel (group 2), or natively without Matrigel or a ring (group 3). Real-time imaging techniques, such as various ultrasound modalities, optical coherence tomography, infrared imaging, and imaging analyses with Image J for tumor growth and extension, as well as color doppler, optical coherence angiography, and fluorescein angiography for angiogenesis, were performed on ED18 as alternative monitoring instruments. The tumor samples were excised on ED18 for histological assessment. Results: There were no significant differences between the three tested experimental groups regarding the length and width of the grafts during the development period. A statistically significant increase in volume (p = 0.0007) and weight (p = 0.0216) between ED7 and ED18 was only documented for tumor specimens of group 2. A significant correlation of the results for the cross-sectional area, largest basal diameter, and volume was documented between the different imaging and measurement techniques and the excised grafts. The formation of a vascular star around the tumor and of a vascular ring on the base of the tumor was observed for the majority of the viable developing grafts as a sign of successful engraftment. Conclusion: The establishment of a CAM-PDX uveal melanoma model could elucidate the biological growth patterns and the efficacy of new therapeutic options in vivo. The methodological novelty of this study, investigating different implanting techniques and exploiting advances in real-time imaging with multiple modalities, allows precise, quantitative assessment in the field of tumor experimentation, underlying the feasibility of CAM as an in vivo PDX model

    Electrochemotherapy with Bleomycin Enhances Radiosensitivity of Uveal Melanomas: First In Vitro Results in 3D Cultures of Primary Uveal Melanoma Cell Lines

    Get PDF
    Electrochemotherapy (ECT) is emerging as a complementary treatment modality for local tumor control in various cancer entities. Irradiation is an established therapeutic option for oncologic patients, which is commonly combined with chemotherapy due to its insufficient targeting ability. The efficiency of radiotherapy for tumors can be enhanced with different radiosensitizers. ECT can potentiate the radiosensitizing effect of chemotherapeutic agents such as bleomycin. The present study aims to evaluate the radiosensitizing effect of concomitant ECT with bleomycin on 3D tumor spheroids with primary and radioresistant uveal melanoma cell lines (UPMD2, UPMM3, UM92.1, Mel270) and irradiation. The changes in the spheroid growth and the cell viability as well the cytotoxic long-term effect of the combination treatment were evaluated with various combinations of electroporation settings and bleomycin concentrations as well as radiotherapy doses. A broad range of radiosensitivity was documented among the spheroids from different uveal melanoma cell lines. The primary cell lines showed a higher radiosensitivity and required lower irradiation and bleomycin doses. The maximal tumor control with a reduction of cell survival <10% was achieved with a 5 Gy irradiation only in the primary uveal melanoma cell lines and in combination with all tested ECT settings, whereas the same result could be obtained in UM92.1 spheroids only after ECT with 20 Gy irradiation. Based on the spheroid growth and the measurement of the cross-sectional area, the Mel270 spheroids, originating from a previously irradiated recurrent uveal melanoma, required higher doses of bleomycin and ECT settings after irradiation with 5 Gy in order to achieve a significant growth reduction. No significant difference could be demonstrated for the reduction of cell viability in the combination therapy with 20 Gy and 1000 V/cm between 1 and 2.5 ”g/mL bleomycin even in Mel270 spheroids, underlying the importance of a drug delivery system to potentiate the radiosensitizing effect of agents in lower doses. ECT should be further assessed for its applicability in clinical settings as a therapeutic radiosensitizing option for radioresistant tumors and a sufficient local tumor control with lower chemotherapy and irradiation doses

    Optimisation of the Chicken Chorioallantoic Membrane Assay in Uveal Melanoma Research

    Get PDF
    The treatment of uveal melanoma and its metastases has not evolved sufficiently over the last decades in comparison to other tumour entities, posing a great challenge in the field of ocular oncology. Despite improvements in the conventional treatment regime and new discoveries about the genetic and molecular background of the primary tumour, effective treatment strategies to either prevent tumours or treat patients with advanced or metastatic disease are still lacking. New therapeutic options are necessary in order to achieve satisfactory local tumour control, reduce the risk of metastasis development, and preserve the eyeball and possibly the visual function of the eye. The development of in vivo model systems remains crucial for the identification and investigation of potential novel treatment modalities. The aim of this study was the optimisation of the chorioallantoic membrane (CAM) model for uveal melanoma research. We analysed the established CAM assay and its modification after the implantation of three-dimensional spheroids. The chorioallantoic membrane of a chick embryo was used to implant uveal melanoma-cell-line-derived spheroids in order to study their growth rate, angiogenic potential, and metastatic capability. Using the UM 92.1, UPMD2, UPMM3, and Mel270 cell lines, we were able to improve the viability of the embryos from 20% to >80% and to achieve up to a fourfold volume increase of the transplanted spheroid masses. The results point to the value of an optimised chicken embryo assay as an in vivo model for testing novel therapies for uveal melanoma by simplifying the research conditions and by contributing to a considerable reduction in animal experiments

    Modulating gut microbiota in a mouse model of Graves' orbitopathy and its impact on induced disease

    Get PDF
    BACKGROUND: Graves' disease (GD) is an autoimmune condition in which autoantibodies to the thyrotropin receptor (TSHR) cause hyperthyroidism. About 50% of GD patients also have Graves' orbitopathy (GO), an intractable disease in which expansion of the orbital contents causes diplopia, proptosis and even blindness. Murine models of GD/GO, developed in different centres, demonstrated significant variation in gut microbiota composition which correlated with TSHR-induced disease heterogeneity. To investigate whether correlation indicates causation, we modified the gut microbiota to determine whether it has a role in thyroid autoimmunity. Female BALB/c mice were treated with either vancomycin, probiotic bacteria, human fecal material transfer (hFMT) from patients with severe GO or ddH2O from birth to immunization with TSHR-A subunit or beta-galactosidase (ÎČgal; age ~ 6 weeks). Incidence and severity of GD (TSHR autoantibodies, thyroid histology, thyroxine level) and GO (orbital fat and muscle histology), lymphocyte phenotype, cytokine profile and gut microbiota were analysed at sacrifice (~ 22 weeks). RESULTS: In ddH2O-TSHR mice, 84% had pathological autoantibodies, 67% elevated thyroxine, 77% hyperplastic thyroids and 70% orbital pathology. Firmicutes were increased, and Bacteroidetes reduced relative to ddH2O-ÎČgal; CCL5 was increased. The random forest algorithm at the genus level predicted vancomycin treatment with 100% accuracy but 74% and 70% for hFMT and probiotic, respectively. Vancomycin significantly reduced gut microbiota richness and diversity compared with all other groups; the incidence and severity of both GD and GO also decreased; reduced orbital pathology correlated positively with Akkermansia spp. whilst IL-4 levels increased. Mice receiving hFMT initially inherited their GO donors' microbiota, and the severity of induced GD increased, as did the orbital brown adipose tissue volume in TSHR mice. Furthermore, genus Bacteroides, which is reduced in GD patients, was significantly increased by vancomycin but reduced in hFMT-treated mice. Probiotic treatment significantly increased CD25+ Treg cells in orbital draining lymph nodes but exacerbated induced autoimmune hyperthyroidism and GO. CONCLUSIONS: These results strongly support a role for the gut microbiota in TSHR-induced disease. Whilst changes to the gut microbiota have a profound effect on quantifiable GD endocrine and immune factors, the impact on GO cellular changes is more nuanced. The findings have translational potential for novel, improved treatments. Video abstract

    Gut microbiome in BALB/c and C57BL/6J mice undergoing experimental thyroid autoimmunity associate with differences in immunological responses and thyroid function

    Get PDF
    Experimental models of hyperthyroid Graves’ disease (GD) and Graves’ orbitopathy (GO) are efficiently developed by genetic immunisation by electroporation with human thyrotropin hormone receptor (hTSHR) A-subunit plasmid in female BALB/c (H-2d) mice. We investigated susceptibility in C57BL/6 J (H-2b) animals to allow studies on disease mechanisms in transgenic and immune response gene knock-out mice. Higher numbers of female C57BL/6 J were positive for pathogenic thyroid stimulating antibodies, but induced hyperthyroidism remained at a low frequency compared to BALB/c animals. Assessment of hTSHR specific T cells showed reduced proliferation in C57BL/6 J animals accompanied with anti-inflammatory IL-10, with less pro-inflammatory IFN-γ compared to BALB/c. Whilst the orbital tissue from immune BALB/c mice showed inflammation and adipogenesis, in contrast C57BL/6 J animals showed normal pathology. We characterised the gut microbiota using 16 S ribosomal RNA gene sequencing to explore its possible pathogenic role in the model. Despite being housed under identical conditions, we observed significantly different organisation of the microbiota (beta-diversity) in the two strains. Taxonomic differences were also noted, with C57BL/6 J showing an enrichment of Operational Taxonomic Units (OTUs) belonging to the Paludibacter and Allobaculum, followed by Limibacter, Anaerophaga and Ureaplasma genera. A higher number of genera significantly correlating with clinical features was observed in C57BL/6 J compared to BALB/c; for example, Limibacter OTUs correlated negatively with thyroid-stimulating antibodies in C57BL/6 J mice. Thus, our data suggest gut microbiota may play a pivotal immunomodulatory role that differentiates the thyroid function and orbital pathology outcome in these two inbred strains undergoing experimental GO

    Nitrite-derived nitric oxide reduces hypoxia-inducible factor 1α-mediated extracellular vesicle production by endothelial cells

    Get PDF
    Introduction Extracellular vesicles (EVs) are small, spherical particles enclosed by a phospholipid bilayer (∌30–1000 nm) released from multiple cell types, and have been shown to have pathophysiological roles in a plethora of disease states. The transcription factor hypoxia-inducible factor-1 (HIF-1) allows for adaptation of cellular physiology in hypoxia and may permit the enhanced release of EVs under such conditions. Nitric oxide (NO) plays a pivotal role in vascular homeostasis, and can modulate the cellular response to hypoxia by preventing HIF-1 accumulation. We aimed to selectively target HIF-1 via sodium nitrite (NaNO2) addition, and examine the effect on endothelial EV, size, concentration and function, and delineate the role of HIF-1 in EV biogenesis. Methods Endothelial (HECV) cells were exposed to hypoxic conditions (1% O2, 24 h) and compared to endothelial cells exposed to normoxia (21% O2) with and without the presence of sodium nitrite (NaNO2) (30 ÎŒM). Allopurinol (100 ÎŒM), an inhibitor of xanthine oxidoreductase, was added both alone and in combination with NaNO2 to cells exposed to hypoxia. EV and cell preparations were quantified by nanoparticle tracking analysis and confirmed by electron microscopy. Western blotting and siRNA were used to confirm the role of HIF-1α and HIF-2α in EV biogenesis. Flow cytometry and time-resolved fluorescence were used to assess the surface and intravesicular protein content. Results Endothelial (HECV) cells exposed to hypoxia (1% O2) produced higher levels of EVs compared to cells exposed to normoxia. This increase was confirmed using the hypoxia-mimetic agent desferrioxamine. Treatment of cells with sodium nitrite (NaNO2) reduced the hypoxic enhancement of EV production. Treatment of cells with the xanthine oxidoreductase inhibitor allopurinol, in addition to NaNO2 attenuated the NaNO2-attributed suppression of hypoxia-mediated EV release. Transfection of cells with HIF-1α siRNA, but not HIF-2α siRNA, prior to hypoxic exposure prevented the enhancement of EV release. Conclusion These data provide evidence that hypoxia enhances the release of EVs in endothelial cells, and that this is mediated by HIF-1α, but not HIF-2α. Furthermore, the reduction of NO2− to NO via xanthine oxidoreductase during hypoxia appears to inhibit HIF-1α-mediated EV production
    • 

    corecore