70 research outputs found
Heavy-quarks in the QGP: study of medium effects through euclidean propagators and spectral functions
The heavy-quark spectral function in a hot plasma is reconstructed from the
corresponding euclidean propagator. The latter is evaluated through a
path-integral simulation. A weak-coupling calculation is also performed,
allowing to interpret the qualitative behavior of the spectral function in
terms of quite general physical processes.Comment: 4 pages, 3 figures - To appear in the conference proceedings for
Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse
Medium-induced color flow softens hadronization
Medium-induced parton energy loss, resulting from gluon exchanges between the
QCD matter and partonic projectiles, is expected to underly the strong
suppression of jets and high- hadron spectra observed in
ultra-relativistic heavy ion collisions. Here, we present the first
color-differential calculation of parton energy loss. We find that color
exchange between medium and projectile enhances the invariant mass of energetic
color singlet clusters in the parton shower by a parametrically large factor
proportional to the square root of the projectile energy. This effect is seen
in more than half of the most energetic color-singlet fragments of
medium-modified parton branchings. Applying a standard cluster hadronization
model, we find that it leads to a characteristic additional softening of
hadronic spectra. A fair description of the nuclear modification factor
measured at the LHC may then be obtained for relatively low momentum transfers
from the medium
A path integral for heavy-quarks in a hot plasma
We propose a model for the propagation of a heavy-quark in a hot plasma, to
be viewed as a first step towards a full description of the dynamics of heavy
quark systems in a quark-gluon plasma, including bound state formation. The
heavy quark is treated as a non relativistic particle interacting with a
fluctuating field, whose correlator is determined by a hard thermal loop
approximation. This approximation, which concerns only the medium in which the
heavy quark propagates, is the only one that is made, and it can be improved.
The dynamics of the heavy quark is given exactly by a quantum mechanical path
integral that is calculated in this paper in the Euclidean space-time using
numerical Monte Carlo techniques. The spectral function of the heavy quark in
the medium is then reconstructed using a Maximum Entropy Method. The path
integral is also evaluated exactly in the case where the mass of the heavy
quark is infinite; one then recovers known results concerning the complex
optical potential that controls the long time behavior of the heavy quark. The
heavy quark correlator and its spectral function is also calculated
semi-analytically at the one-loop order, which allows for a detailed
description of the coupling between the heavy quark and the plasma collective
modes
Erratum to: A study of vorticity formation in high energy nuclear collisions
Due to an oversight of ours in proofreading and a communication problem with the publisher, the figures published in F. Becattini et al. Eur. Phys. J. C (2015) 75: 406 were not correct. This Erratum contains the correct figures as in arXiv 1501.04468v2, submitted on March 12 2015, and the post-publication version arXiv 1501.04468v3, submitted on August 17 2015
Relativistic viscous hydrodynamics for heavy-ion collisions with ECHO-QGP
We present ECHO-QGP, a numerical code for -dimensional relativistic
viscous hydrodynamics designed for the modeling of the space-time evolution of
the matter created in high energy nuclear collisions. The code has been built
on top of the \emph{Eulerian Conservative High-Order} astrophysical code for
general relativistic magneto-hydrodynamics [\emph{Del Zanna et al., Astron.
Astrophys. 473, 11, 2007}] and here it has been upgraded to handle the physics
of the Quark-Gluon Plasma. ECHO-QGP features second-order treatment of causal
relativistic viscosity effects in both Minkowskian or Bjorken coordinates;
partial or complete chemical equilibrium of hadronic species before kinetic
freeze-out; initial conditions based on the optical Glauber model, including a
Monte-Carlo routine for event-by-event fluctuating initial conditions; a
freeze-out procedure based on the Cooper-Frye prescription. The code is
extensively validated against several test problems and results always appear
accurate, as guaranteed by the combination of the conservative
(shock-capturing) approach and the high-order methods employed. ECHO-QGP can be
extended to include evolution of the electromagnetic fields coupled to the
plasma.Comment: 25 pages, two column, Final version: accepted for publication in
European Physical Journal
Colour-electric spectral function at next-to-leading order
The spectral function related to the correlator of two colour-electric fields
along a Polyakov loop determines the momentum diffusion coefficient of a heavy
quark near rest with respect to a heat bath. We compute this spectral function
at next-to-leading order, O(alpha_s^2), in the weak-coupling expansion. The
high-frequency part of our result (omega >> T), which is shown to be
temperature-independent, is accurately determined thanks to asymptotic freedom;
the low-frequency part of our result (omega << T), in which Hard Thermal Loop
resummation is needed in order to cure infrared divergences, agrees with a
previously determined expression. Our result may help to calibrate the overall
normalization of a lattice-extracted spectral function in a perturbative
frequency domain T << omega << 1/a, paving the way for a non-perturbative
estimate of the momentum diffusion coefficient at omega -> 0. We also evaluate
the colour-electric Euclidean correlator, which could be directly compared with
lattice simulations. As an aside we determine the Euclidean correlator in the
lattice strong-coupling expansion, showing that through a limiting procedure it
can in principle be defined also in the confined phase of pure Yang-Mills
theory, even if a practical measurement could be very noisy there.Comment: 38 page
The contribution of medium-modified color flow to jet quenching
Multiple interactions between parton showers and the surrounding QCD matter
are expected to underlie the strong medium-modifications of jet observables in
ultra-relativistic heavy ion collisions at RHIC and at the LHC. Here, we note
that such jet-medium interactions alter generically and characteristically the
color correlations in the parton shower. We characterize these effects in a
color-differential calculation of the medium-induced gluon radiation spectrum
to first and second order in opacity. By interfacing simple branching histories
of medium-modified color flow with the Lund hadronization model, we analyze how
the medium modification of color correlations can affect the distribution of
hadronic fragments in jets. Importantly, we observe that jet-medium
interactions give rise to the medium-induced color decoherence of gluons from
the parton shower. Since hadronization respects color flow and since each color
singlet in a parton shower is hadronized separately, this medium-induced color
decoherence leaves characteristic signatures in the jet fragmentation pattern.
In particular, it can contribute to the quenching of leading hadron spectra.
Moreover, it can increase strongly the yield of soft hadronic fragments from a
jet, while the distribution of more energetic hadrons follows naturally the
shape of a vacuum-like fragmentation pattern of lower total energy
Thermal width and gluo-dissociation of quarkonium in pNRQCD
The thermal width of heavy-quarkonium bound states in a quark-gluon plasma
has been recently derived in an effective field theory approach. Two phenomena
contribute to the width: the Landau damping phenomenon and the break-up of a
colour-singlet bound state into a colour-octet heavy quark-antiquark pair by
absorption of a thermal gluon. In the paper, we investigate the relation
between the singlet-to-octet thermal break-up and the so-called
gluo-dissociation, a mechanism for quarkonium dissociation widely used in
phenomenological approaches. The gluo-dissociation thermal width is obtained by
convoluting the gluon thermal distribution with the cross section of a gluon
and a 1S quarkonium state to a colour octet quark-antiquark state in vacuum, a
cross section that at leading order, but neglecting colour-octet effects, was
computed long ago by Bhanot and Peskin. We will, first, show that the effective
field theory framework provides a natural derivation of the gluo-dissociation
factorization formula at leading order, which is, indeed, the singlet-to-octet
thermal break-up expression. Second, the singlet-to-octet thermal break-up
expression will allow us to improve the Bhanot--Peskin cross section by
including the contribution of the octet potential, which amounts to include
final-state interactions between the heavy quark and antiquark. Finally, we
will quantify the effects due to final-state interactions on the
gluo-dissociation cross section and on the quarkonium thermal width.Comment: 17 pages, 6 figure
Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions
This report reviews the study of open heavy-flavour and quarkonium production
in high-energy hadronic collisions, as tools to investigate fundamental aspects
of Quantum Chromodynamics, from the proton and nucleus structure at high energy
to deconfinement and the properties of the Quark-Gluon Plasma. Emphasis is
given to the lessons learnt from LHC Run 1 results, which are reviewed in a
global picture with the results from SPS and RHIC at lower energies, as well as
to the questions to be addressed in the future. The report covers heavy flavour
and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus
collisions. This includes discussion of the effects of hot and cold strongly
interacting matter, quarkonium photo-production in nucleus-nucleus collisions
and perspectives on the study of heavy flavour and quarkonium with upgrades of
existing experiments and new experiments. The report results from the activity
of the SaporeGravis network of the I3 Hadron Physics programme of the European
Union 7th Framework Programme
INFN What Next: Ultra-relativistic Heavy-Ion Collisions
This document was prepared by the community that is active in Italy, within
INFN (Istituto Nazionale di Fisica Nucleare), in the field of
ultra-relativistic heavy-ion collisions. The experimental study of the phase
diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP)
deconfined state will proceed, in the next 10-15 years, along two directions:
the high-energy regime at RHIC and at the LHC, and the low-energy regime at
FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the
present and future programme of the ALICE experiment, the upgrade of which will
open, in the 2020s, a new phase of high-precision characterisation of the QGP
properties at the LHC. As a complement of this main activity, there is a
growing interest in a possible future experiment at the SPS, which would target
the search for the onset of deconfinement using dimuon measurements. On a
longer timescale, the community looks with interest at the ongoing studies and
discussions on a possible fixed-target programme using the LHC ion beams and on
the Future Circular Collider.Comment: 99 pages, 56 figure
- …