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Abstract We present ECHO-QGP, a numerical code for
(3 + 1)-dimensional relativistic viscous hydrodynamics de-
signed for the modeling of the space-time evolution of the
matter created in high-energy nuclear collisions. The code
has been built on top of the Eulerian Conservative High-
Order astrophysical code for general relativistic magneto-
hydrodynamics (Del Zanna et al. in Astron. Astrophys.
473:11, 2007] and here it has been upgraded to handle the
physics of the Quark–Gluon Plasma. ECHO-QGP features
second-order treatment of causal relativistic viscosity effects
both in Minkowskian and in Bjorken coordinates; partial or
complete chemical equilibrium of hadronic species before
kinetic freeze-out; initial conditions based on the Glauber
model, including a Monte-Carlo routine for event-by-event
fluctuating initial conditions; a freeze-out procedure based
on the Cooper–Frye prescription. The code is extensively
validated against several test problems and results always
appear accurate, as guaranteed by the combination of the
conservative (shock-capturing) approach and the high-order
methods employed. ECHO-QGP can be extended to in-
clude evolution of the electromagnetic fields coupled to the
plasma.

Keywords Relativistic fluid dynamics · Relativistic
heavy-ion collisions · Quark-gluon plasma · Methods:
numerical
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1 Introduction

Physics of strong interactions, described by quantum chro-
modynamics (QCD), has many fascinating aspects. Among
them color confinement (absence of isolated quarks and glu-
ons in nature) and asymptotic freedom (quarks and gluons
behave as if they were free at large energies/temperatures)
are the most celebrated ones. Based on these properties,
QCD predicts a deconfined phase of matter at high temper-
ature where quarks and gluons are effectively free beyond
the nucleonic volume. This state of matter, which one tries
to reproduce in relativistic heavy-ion collision experiments,
is commonly known as Quark–Gluon Plasma (QGP).

Experimental observations strongly suggest that the QGP,
near the critical temperature, behaves more like a nearly per-
fect fluid than like a free gas of quarks and gluons [1–8].
To interpret the experimental signatures of deconfinement
in heavy-ion collisions one would like to know the entire
evolution of the produced matter. Relativistic hydrodynamic
(RHD) modeling of the QGP evolution has been fairly suc-
cessful in understanding particle spectra, flow and correla-
tions (e.g. [9]). The current state of the art is represented
by second-order viscous RHD calculations in (3 + 1)-D. In
particular, the RHD models were able to reproduce the trans-
verse momentum spectra of hadrons in central and semi-
central collisions, including the anisotropy in non-central
collisions—quantified in terms of the elliptic-flow coeffi-
cient v2—in the range of the transverse momentum up to
about 1.5–2.0 GeV/c [10–12], which covers more than 99 %
of the emitted particles. These outcomes from ideal RHD,
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found to be in agreement with the experimental data, were
suggestive of an early thermalization of the QGP in ultra-
relativistic heavy ion collisions and of its strongly interact-
ing (non-perturbative) nature, giving rise to the notion of a
strongly coupled QGP that behaves like an almost perfect
fluid, i.e. with nearly vanishing shear viscosity, bulk viscos-
ity, and thermal conductivity.

Initial formulations of relativistic viscous fluid dynam-
ics were based on the extension of Navier–Stokes equations
by Eckart [13] and Landau [14]. These descriptions ran into
difficulties due to the acausal behavior of the propagation
of short wavelength modes. To cure this problem, second-
order dissipative RHD was formulated almost four decades
ago by Israel and Stewart [15, 16] and Müller [17, 18]. In
this formalism, the dissipative flows become independent
dynamical entities whose kinetic equation of motions are
coupled and need to be solved simultaneously with the hy-
drodynamic evolution equations. Viscous RHD numerical
studies were initially limited to (1 + 1)-D [19–24] and to
(2 + 1)-D assuming longitudinal boost invariance [25–32],
both with averaged as well as well as with fluctuating ini-
tial conditions. More recently, also (3 + 1)-D simulations
of heavy-ion collisions have been performed, both with and
without dissipative effects [10, 11, 33–35], and they turned
out to be quite successful in understanding the bulk and flow
properties of the QGP [36–43].

In this paper, we present a new viscous RHD code for
heavy-ion collisions: ECHO-QGP. It is based on the Eu-
lerian Conservative High-Order (ECHO) code developed
by Del Zanna et al. [44] for astrophysical applications and
currently adapted to face the physics of relativistic heavy-
ion collisions. The original ECHO code can handle non-
vanishing conserved-number currents as well as electromag-
netic fields, which are essential for the astrophysical compu-
tations, in any (3 + 1)-D metric of General Relativity. Re-
cent developments include the coupling to elliptic solvers
for Einstein equations, for situations where self-gravity is
important [45], and modifications to the Ohm law in the
presence of turbulent mean-field dynamo and dissipative ef-
fects [46]. Here the conservative approach and the shock-
capturing properties of the original code (needed to handle
strongly nonlinear effects), as well as the high-order numeri-
cal procedures (to achieve accurate resolution of small-scale
features), are fully preserved. However, in view of the fact
that the QGP produced at RHIC and LHC energies is almost
baryon-free, we leave the inclusion of finite baryon density
for the future (a sort of number density will be evolved as a
tracer just for numerical reasons) and we neglect all possible
electromagnetic effects at this stage.

Actually, in high-energy nuclear collisions a large mag-
netic field (up to ∼1015 Tesla) may be present, but its evo-
lution in the plasma in a full electromagneto-RHD calcula-
tion has not been tackled so far. There is a growing inter-

est on its possible role, particularly in the presence of non-
trivial topological configurations of the color-field [47, 48].
ECHO-QGP, developed starting from a relativistic magneto-
hydrodynamic (MHD) code, could naturally allow the inclu-
sion of a non-vanishing electromagnetic field: this will rep-
resent our next topic of research, first within an ideal MHD
setup, then for the case of a resistive plasma.

In the following, we shall present the formalism imple-
mented into ECHO-QGP. Then we will describe the various
equations of state, initial conditions and diagnostics proce-
dures employed, and we will solve the evolution equations
(both in Minkowski and in Bjorken coordinates). Finally we
will display the outcomes of a rich sample of validation tests
and of simulations appropriate to compare with RHIC-type
data.

The paper is organized as follows. In Sect. 2, the math-
ematical formalism and the physics assumptions are de-
scribed; Sect. 3 deals with the description of the algorithms
and the numerical tests of the code. In Sect. 4, the freeze-out
procedure adopted in our analysis is described. Results as
appropriate to RHIC-type data are presented and discussed
in Sect. 5. Section 6 offers conclusions, plausible extensions
and outlook of the work. Finally, some of the formalism
and computational details are presented in Appendices A
and B.

1.1 Notations

We adopt the following notations in this article. Natural
units are used throughout, that is �= c = kB = 1. The signa-
ture of the metric tensor is chosen to be (−1,+1,+1,+1),
as often employed in numerical relativity, especially in
the astrophysical community (and in the original ECHO
code). Greek indices used in four-vectors range from 0 to 3,
while Latin indices, ranging from 1 to 3, are used for spa-
tial components. In the numerical tests and applications,
we will consider two systems, viz. Minkowski coordinates
(t, x, y, z) and Bjorken coordinates (τ, x, y, ηs), which are
the most appropriate for heavy ion collisions (see the ap-
pendices). The covariant derivative is denoted as dμ, then
dλgμν = 0, and we adopt ∂μ for the ordinary derivative and
Γ λ

αβ for the connection. The action of the covariant deriva-
tive on any (mixed, rank 2) tensor T α

β is then as follows:

dμT α
β = ∂μT α

β + Γ α
μλT

λ
β − Γ λ

μβT α
λ ,

where the Christoffel symbol is defined as

Γ λ
αβ = 1

2
gλγ (∂αgγβ + ∂βgαγ − ∂γ gαβ).

The fluid four-velocity is denoted as uμ ≡ γ (1, vi), with the
normalizing condition uμuμ = −1 providing the definition
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of the fluid Lorentz factor γ = (1 − gij v
ivj )−1/2, where

vi ≡ ui/γ and γ ≡ u0. The orthogonal projector is

�μν ≡ gμν + uμuν,

and the quantities will be split according to it. The covariant
derivative can also be always written as

dμ = −uμD + ∇μ,

where the comoving derivative in the temporal direction has
been defined as D ≡ uαdα , whereas the spatial comoving
derivative as ∇μ ≡ �α

μdα .

2 Formalism and physical assumptions

2.1 Relativistic viscous hydrodynamics

The basic quantities needed to describe the dynamics of any
relativistic fluid are the current Nμ (associated to any con-
served charge) and the energy-momentum tensor T μν , both
conserved quantities satisfying the evolution laws

dμNμ = 0, (1)

dμT μν = 0. (2)

In the presence of dissipation these quantities can be decom-
posed in general (see for instance [49]) as

Nμ = nuμ + V μ, (3)

T μν = euμuν + (P + Π)�μν + πμν + wμuν + wνuμ,

(4)

where n = −uμNμ is the charge density, V μ = �
μ
αNα

is the particle diffusion flux, e = uμT μνuν is the energy
density, P + Π = 1

3�μνT
μν is the isotropic pressure, and

wμ = −�
μ
αT αβuβ is the energy-momentum flow orthog-

onal to uμ. The quantities πμν and Π denote the shear
and bulk part of the viscous stress tensor, respectively.
The shear viscous tensor is defined as πμν = [ 1

2 (�
μ
α�ν

β +
�

μ
β�ν

α) − 1
3�μν�αβ ]T αβ , and it satisfies the orthogonal-

ity (πμνuν = 0) and traceless (πμ
μ = 0) conditions. In the

absence of the dissipative quantities (V μ = wμ = πμν =
Π = 0), we obtain the ideal decompositions N

μ
eq = nuμ and

T
μν
eq = euμuν + P�μν . In the local rest frame of the fluid

(LRF), the quantities n and e are fixed to their equilibrium
values by utilizing the Landau matching conditions (n =
neq, e = eeq), and the pressure is obtained using an appro-
priate equation of state (EOS) as P = P(e, n) = 1

3�μνT
μν
eq .

At this stage, there are two possibilities as far as the se-
lection of the frame is concerned. One can either choose the
Landau frame in which wμ = 0 (no net energy-momentum

dissipative flow) or the Eckart frame in which V μ = 0 (no
charge dissipative flow). Since the QGP in experiments is
created at vanishingly small baryon density and the equa-
tion of state can be assumed in the form P = P(e), the for-
mer choice of frame is more convenient for us, so we shall
choose the Landau frame where wμ = 0. Therefore, we have
only one quantity left to describe the dynamics of the fluid
under consideration, viz. T μν , and the equation for Nμ be-
comes redundant.

It is now convenient to decompose the conservation law
in Eq. (2) along the directions parallel and orthogonal to
uμ, in order to derive the energy and momentum equations,
respectively. Before doing so, let us introduce some useful
kinematic quantities. The covariant derivative of the fluid ve-
locity can be decomposed in its irreducible tensorial parts
as [50]

dμuν = σμν + ωμν − uμDuν + 1

3
�μνθ, (5)

where we define the (transverse, traceless, and symmetric)
shear tensor, the (transverse, traceless, and antisymmetric)
vorticity tensor, and the expansion scalar, respectively, as

σμν = 1

2
(∇μuν + ∇νuμ) − 1

3
�μνθ,

= 1

2
(dμuν + dνuμ) + 1

2
(uμDuν + uνDuμ) − 1

3
�μνθ,

(6)

ωμν = 1

2
(∇μuν − ∇νuμ)

= 1

2
(dμuν − dνuμ) + 1

2
(uμDuν − uνDuμ), (7)

θ = ∇μuμ = dμuμ. (8)

With the above definitions, the relativistic energy and mo-
mentum equations can be written as

De + (e + P + Π)θ + πμνσμν = 0, (9)

(e + P + Π)Duν + ∇ν(P + Π) + �β
ν ∇απα

β

+ Duμ πμν = 0, (10)

and the latter is clearly orthogonal to uν .
The bulk and shear viscous parts of stress tensor, includ-

ing terms up to second-order in the velocity gradients, satis-
fies the following evolution equations:

DΠ = − 1

τΠ

(Π + ζθ) − 4

3
Πθ, (11)

�μ
α�ν

βDπαβ = − 1

τπ

(
πμν + 2ησμν

) − 4

3
πμνθ

− λ
(
πμλων

λ + πνλω
μ
λ

)
(12)
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For their derivation and for the most general structure of the
evolution equations for Π and πμν we refer the reader to
[51–53]. In our analysis, we ignore terms that are quadratic
in Π , πμν and ωμν . To obtain the solution of the above evo-
lution equations we shall need to specify η, ζ , the shear and
bulk relaxation times, τπ and τΠ , and the other second-order
transport parameter λ ≡ λ2/η [52, 53]. The parameter λ2 is
known in N = 4 Super-symmetric Yang Mills theory, but
not in QCD in a non-perturbative domain. The vorticity con-
tribution in Eq. (12) in the present analysis will be mostly
ignored by letting λ = 0, whereas in specific runs it will be
chosen to be 1 as in [49].

Now, after employing the definition of the orthogonal
projector and the orthogonality condition uμπμν = 0, we
can rewrite Eq. (12) as

Dπμν = − 1

τπ

(
πμν + 2ησμν

)− 4

3
πμνθ +Iμν

1 +Iμν
2 , (13)

where the source term Iμν
1 comes from the orthogonal pro-

jection, while Iμν
2 is the vorticity contribution term. Their

expression is the following:

Iμν
1 = (

πλμuν + πλνuμ
)
Duλ, (14)

Iμν
2 = −λ

(
πμλων

λ + πνλω
μ
λ

)
. (15)

2.2 Implementation in ECHO-QGP

Let us look at the hydrodynamic equations that are obtained
by invoking the conservation of T μν and the evolution equa-
tions for Π and πμν in the context of the ECHO code. The
ECHO-QGP equations must be written as conservative bal-
ance laws and here we will make an effort to remain as close
as possible to the formalism originally employed in [44].
Even when working in the Landau frame, it is convenient
to evolve the continuity equation (in the limit V μ = 0) for
numerical reasons. This becomes

Dn + nθ = 0, (16)

and basically the number density n must be interpreted just
as a tracer responding to the evolution of the fluid velocity
through the expansion scalar θ . In conservation form this is

dμNμ = |g|− 1
2 ∂μ

(|g| 1
2 Nμ

) = 0 (17)

or also

∂0
(|g| 1

2 N0) + ∂k

(|g| 1
2 Nk

) = 0, (18)

where N0 = nγ and Nk = nγ vk . The energy-momentum
conservation equation can be expressed as

dμT μ
ν = |g|− 1

2 ∂μ

(|g| 1
2 T μ

ν

) − Γ
μ
νλT

λ
μ = 0, (19)

where the relation Γ
μ
μλ = |g|− 1

2 ∂λ|g| 1
2 has been employed,

g being the determinant of the metric tensor. We can further
rewrite this equation as

∂0
(|g| 1

2 T 0
ν

)+∂k

(|g| 1
2 T k

ν

) = |g| 1
2 Γ

μ
νλT

λ
μ = |g| 1

2
1

2
T λμ∂νgλμ,

(20)

where the symmetry properties of the energy-momentum
tensor have been now exploited.

Since our aim is to write all the equations in a conser-
vative form, so that the same numerical techniques can be
conveniently used for the whole system, the evolution equa-
tion of the dissipative fluxes πμν and Π can also be cast in
this above form of balance laws. We then use the dμNμ = 0
relation in order to rewrite the D ≡ uμdμ derivatives. If one
multiplies the viscous evolution equations by the tracer n

one has

∂0
(|g| 1

2 N0Π
) + ∂k

(|g| 1
2 NkΠ

)

= |g| 1
2 n

[
− 1

τΠ

(Π + ζθ) − 4

3
Πθ

]
(21)

and

∂0
(|g| 1

2 N0πμν
) + ∂k

(|g| 1
2 Nkπμν

)

= |g| 1
2 n

[
− 1

τπ

(
πμν + 2ησμν

) − 4

3
πμνθ

+ Iμν
0 + Iμν

1 + Iμν
2

]
, (22)

where we have singled out

Iμν
0 = −uα

(
Γ

μ
λαπλν + Γ ν

λαπμλ
)

(23)

as a separated source term, which clearly vanishes in
the Minkowski metric. The technique of introducing a
conserved-number current as a tracer is exploited in a similar
way within a recent code for (2 + 1)-D Lagrangian hydro-
dynamics [54] to solve the evolution equation of the bulk
viscous pressure Π .

Due to the orthogonality condition, only six out of ten
components of the viscous stress tensor are independent
(here we decide not to impose the additional traceless con-
dition). Our choice for ECHO-QGP is to evolve only the six
spatial components πij . Then we can combine Eqs. (20)–
(21) in matrix form as a system of 1 + 3 + 1 + 1 + 6 = 12
balance laws

∂0U + ∂kFk = S, (24)



Eur. Phys. J. C (2013) 73:2524 Page 5 of 26

where

U = |g| 1
2

⎛

⎜⎜⎜⎜
⎝

N ≡ N0

Si ≡ T 0
i

E ≡ −T 0
0

NΠ

Nπij

⎞

⎟⎟⎟⎟
⎠

, Fk = |g| 1
2

⎛

⎜⎜⎜⎜
⎝

Nk

T k
i

−T k
0

NkΠ

Nkπij

⎞

⎟⎟⎟⎟
⎠

(25)

are, respectively, the set of conservative variables and fluxes,
while the source terms are given by

S = |g| 1
2

⎛

⎜⎜
⎜⎜
⎜
⎝

0
1
2T μν∂igμν

− 1
2T μν∂0gμν

n[− 1
τπ

(Π + ζθ) − 4
3Πθ ]

n[− 1
τπ

(πij +2ησ ij )− 4
3πij θ +Iij

0 +Iij

1 +Iij

2 ]

⎞

⎟⎟
⎟⎟
⎟
⎠

.

(26)

The above Eqs. (24–26) represent the set of ECHO-QGP
equations in the most general form (we recall that ECHO
can work in any kind of GR metric). We shall specify them
in Minkowski and Bjorken coordinates in full (3 + 1)-D in
Appendix B.

Let us now proceed to the estimation of the primitive
variables like the fluid velocity and the local energy den-
sity, which are needed at every time step of the evolution
to calculate the above fluxes and source terms, as well as
all the quantities for diagnostics. In order to do so, we first
rewrite the energy-momentum components as needed in our
evolution equations above, assuming for simplicity a met-
ric in which g00 = −1 and g0i = 0 (both conditions are met
either by flat space and Bjorken coordinates). First, the or-
thogonality conditions πμνuν = 0 yield the relations

π0i = πij vj , π00 = π0ivi = πij vivj , (27)

where vi = ui/γ , vi = gij v
j , and γ = (1−viv

i)−1/2. Then,
we rewrite the conservative variables as

N = nγ, (28)

Si = (e + P + Π)γ 2vi + π0i , (29)

E = (e + P + Π)γ 2 − (P + Π) + π00, (30)

where we have substituted Si = gijSj and π00 = −π0
0.

Now, provided that πij are also conserved variables (since
N is a conserved variable in turn), if the vi components were
known then the LRF charge and energy densities would be
given by

e = E − gijS
ivj , n = N/γ, (31)

then also the pressure P = P(e) or even P = P(e, n) can
be worked out. However, the procedure that we have found

more stable is reported below, which is basically an itera-
tion of the one for ideal relativistic hydrodynamics, assum-
ing that corrections due to viscous terms are small (therefore
a few iterations of it will be required).

• An external cycle on vi components is performed, starting
from the values at the previous time step. Then we define
the quantities

Ẽ = E − π00, S̃i = Si − π0i;
• An inner cycle on P is performed, then we define

P̃ (P ) = P + Π, v2(P ) = S̃2/(Ẽ + P̃ )2

and

e(P ) = (Ẽ + P̃ )
(
1 − v2) − P̃ , n(P ) = N

√
1 − v2.

The cycle can be iterated via a Newton–Raphson proce-
dure, trying to minimize the quantity

f (P ) = P
[
e(P ),n(P )

] − P,

and then

Pnew = P − f (P )/f ′(P ),

where

f ′(P ) = ∂P
∂e

de

dP
+ ∂P

∂n

dn

dP
− 1,

until |Pnew − P | → 0 to a given tolerance.
• Once the pressure for the old choice of vi components has

been found, the new choice is provided by

vi
new = S̃i/(Ẽ + P̃ ),

and the external loop is closed when a given tolerance in
vi

new − vi terms is reached.

Notice that, in the ideal case, there is no need of the external
iteration since Ẽ ≡ E, S̃i ≡ Si , P̃ ≡ P . The same would
hold if also the π00 and π0i viscous terms were evolved.
Thanks to the conservative nature of N , they would be in fact
conservative variables in turn, without the need to retrieve
them via the orthogonality condition (which implies the use
of unknown velocity terms).

Before concluding the section, we anticipate another in-
gredient required by the numerical evolution scheme. In the
evaluation of numerical fluxes (and also of the maximum
time step allowed) the local fastest characteristic speeds as-
sociated to the Jacobian ∂Fk/∂U are required, for every di-
rection k. In the ideal case we have [44]

λk± = (1 − c2
s )v

k

1 − v2c2
s

±
√

c2
s (1 − v2)[(1 − v2c2

s )g
kk − (1 − c2

s )v
k2]

1 − v2c2
s

, (32)
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where the sound speed is given by

c2
s = ∂P

∂e
+ n

e + P

∂P
∂n

. (33)

The same numerical scheme has also been applied in the
presence of viscosity.

2.3 First- and second-order transport coefficients

As seen in the previous section, the first-order transport co-
efficients η and ζ (shear and bulk viscosity) appear as input
parameters in the evolution equations of the viscous stress
tensor. The ratio of these coefficients to the entropy density
s is known to be essential to understand to what extent dissi-
pative processes are effective in slowing down the expansion
of the fluid in response to pressure gradients. For vanishing
baryon densities, we recall the fundamental relation

sT = e + P, (34)

providing the entropy density once the other thermodynam-
ical quantities are known (see below for the choice of the
equation of state).

Elliptic-flow measurements at RHIC suggest a maximum
value of η/s ∼ 0.16 [55] for Glauber initial conditions [56]
and of η/s ∼ 0.24 for Color Glass Condensate (CGC) type
initial conditions [57–60], which entail a larger spatial ec-
centricity with respect to optical-Glauber calculations. In the
present paper, where we employ a Glauber initialization, we
let η/s vary within the range 0.08 ≤ η/s ≤ 0.16. Concerning
the bulk viscosity, we employ the relation

ζ

s
= 2

η

s

(
1

3
− c2

s

)
, (35)

as obtained from the study of strongly coupled gauge the-
ories [61], in which the sound speed is calculated as in
Eq. (33) assuming P = P(e). The second-order transport
coefficients, viz. the shear and bulk relaxation times τπ and
τΠ , are known both from kinetic theory [15, 16, 21] and
from AdS-CFT [52, 53, 62, 63]. Following [12, 34], in
ECHO-QGP the choice is

τπ = τΠ = 3η

sT
. (36)

As far as the coupling with the vorticity terms is concerned,
as anticipated we shall assume either λ = 0 or λ = 1.

Finally, note that for RHIC initial conditions, we initial-
ize the ECHO-QGP code by choosing the LRF at τ0, where
by definition uμ ≡ (1,0,0,0). However, in Bjorken coor-
dinates, even when all spatial velocity components and their
derivatives vanish, θ and σμν are not zero (see Appendix B),
thus Π and the components of πμν must be initialized

somehow. We use the first-order expressions Π = −ζθ and
πμν = −2ησμν , thus

Π = −ζ/τ, 2πxx = 2πyy = −τ 2πηη = 4

3
η/τ, (37)

at τ = τ0, with all other components set to zero.

2.4 Equation of state

Solving hydrodynamic equations require the knowledge of
the Equation of State (EOS) of the system, and as antici-
pated, though the code is already designed to handle any
form for P = P(e, n), here we shall just consider the case
P = P(e). ECHO-QGP allows the use of any tabulated EOS
of this kind, if provided in the format (T , e/T 4,P/T 4, c2

s )

by the user, with c2
s ≡ dP/de.

However, some choices are already implemented in the
code and are offered to the user. Test runs can be performed
with the ultra-relativistic ideal gas EOS P = e/3. More pre-
cisely, we set in these cases

P = e

3
= gπ2

90
T 4, c2

s = 1

3
, (38)

where g = 37 for a non-interacting QGP with three light
flavors.

More realistic QCD EOS’s are included in the package,
in the tabulated form mentioned above, and can be selected
by the user. The EOS in [64], arising from a weak-coupling
QCD calculation with realistic quark masses and employed
in the code by Romatschke [28], will be often used in this
paper.

ECHO-QGP includes also two tabulated EOS’s obtained
by matching a Hadron-Resonance-Gas EOS at low tempera-
ture with the continuum-extrapolated lattice-QCD results by
the Budapest–Wuppertal collaboration [65]. The HRG EOS
was obtained by summing the contributions of all hadrons
and resonances in the PDG [66] up to a mass of 2 GeV:
P = ∑

r Pr . In the classical limit T � mr (quantum cor-
rections are included for pions, kaons and η’s) one has sim-
ply

Pr = gr

T 2m2
r

2π2
eμr/T K2

(
mr

T

)
, (39)

and the density of resonance r in the cocktail is given
by

nr ≡
(

∂P

∂μr

)

T

= gr

T m2
r

2π2
eμr/T K2

(
mr

T

)
. (40)

In the Chemical Equilibrium case (CE) in the hadronic
phase all the chemical potentials vanish ({μr = 0}) and the
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multiplicity of any resonance r is simply set by the tem-
perature through the ratio mr/T . On the other hand ex-
perimental data provide evidence that the chemical freeze-
out—in which particle ratios are fixed—occurs earlier than
the kinetic one, in which particle spectra gets frozen.
A realistic EOS should in principle contain the correct
chemical composition in the hadronic phase. This can be
enforced in the following way. At the chemical freeze-
out temperature Tc the abundances nr of all the reso-
nances are determined by Eq. (40) with μr = 0. After-
wards the fireball evolves maintaining Partial Chemical
Equilibrium (PCE): elastic interactions mediated by res-
onances (ππ → ρ → ππ , Kπ → K∗ → Kπ , pπ →
� → pπ . . .) are allowed, changing the abundance of the
single resonances r , but conserving the “effective mul-
tiplicity” of stable hadrons h (π,K,η,N,Λ,Σ,Ξ and
Ω)

nh = nh +
∑

r 
=h

nr

〈
Nr

h

〉
, (41)

where 〈Nr
h〉 represents the average number of hadrons h

coming from the decay of resonance r . Furthermore the
multiplicity of resonance r is fixed by the chemical po-
tential μr ≡ ∑

h〈Nr
h〉μh. Assuming an isoentropic expan-

sion of the fireball, PCE is set fixing at each temper-
ature the chemical potentials μh so to satisfy the rela-
tion

nh(T , {μh′ })
s(T , {μh′ }) = nh(Tc, {μh′ = 0})

s(Tc, {μh′ = 0}) , (42)

which amounts to the conservation of the entropy per (ef-
fective) particle throughout the medium evolution. Both in
the CE and in the PCE case the transition from the lattice-
QCD to the HRG description is performed at the temper-
ature T = 150 MeV where the matching looks sufficiently
smooth: results for the EOS are displayed in Fig. 1. A tabu-
lation of the HRG+lQCD EOS in the PCE case is also part
of the ECHO-QGP code.

Finally, we set the acronyms for the different equations
of state currently implemented in ECHO-QGP. The ultra-
relativistic ideal gas P = e/3 EOS will be labeled hence-
forth as EOS-I, and will be used mainly for testing pur-
poses. The EOS computed by Laine and Schröder [64]
will be termed as EOS-LS. The one with HRG+Lattice
with CE (HRG+LAT+CE) will be termed as EOS-CE
(though it will be not used in this paper), while the ana-
log one with partial chemical equilibrium will be labeled as
EOS-PCE.

2.5 Initial conditions

Various choices of initial conditions are implemented in the
code and are selectable by the user, including test problems
used for the numerical validation of the code.

Fig. 1 (Upper panel) HRG EOS, with chemical (CE, black continu-
ous line) and partial chemical equilibrium (PCE, colored dotted/dashed
lines), vs. the lattice-QCD results in [65] (turquoise points). (Lower
panel) The EOS P (e) resulting from the matching of HRG with lat-
tice-QCD results, in the CE (in black) and PCE (in red) cases. The
matching has been performed at the temperature T = 150 MeV (Color
figure online)

For physical applications, ECHO-QGP will be mostly
tested with smooth initial conditions based on the opti-
cal Glauber model. Initialization is done by setting ei-
ther the energy-density or the entropy-density distribution
at the initial time τ0. In the (2 + 1)-D case these quanti-
ties receive both a soft (proportional to npart) and a hard
(proportional to ncoll) contribution, with relative weight
given by the coefficient α ∈ [0,1] (see, e.g. [67]). We
set

e(τ0,x;b) = e0

[
(1 − α)

npart(x;b)

npart(0;0)
+ α

ncoll(x;b)

ncoll(0;0)

]
, (43)

where e(τ0,x;b) stands for either the energy or the en-
tropy density and e0 is the corresponding value at x = 0
and b = 0, x and b being the coordinates in the transverse
plane and the impact parameter, respectively. In the opti-
cal Glauber model the density of participants npart(x;b) ≡
nA

part(x;b)+nB
part(x;b) and of binary collisions in the trans-
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verse plane are given by

nA
part(x;b) = AT̂A(x + b/2)

× {
1 − [

1 − T̂B(x − b/2)σ in
NN

]B}
,

nB
part(x;b) = B T̂B(x − b/2)

× {
1 − [

1 − T̂A(x + b/2)σ in
NN

]A}
,

(44)

and

ncoll(x;b) = AB σ in
NN T̂A(x + b/2)T̂B(x − b/2), (45)

σ in
NN being the inelastic nucleon–nucleon cross-section and

the nuclear thickness function (normalized to 1) being de-
fined by

T̂A/B(x) ≡
∫ ∞

−∞
dzρA/B(x, z). (46)

In Eq. (46) ρ is a Fermi parameterization of the nuclear den-
sity distribution [68]. Tunable parameters are the maximum
initial energy density in central collisions e0 and the hard-
ness fraction α.

In the 3D case the initialization is performed using the
model for the density distribution as in [69, 70]

e(τ0,x, ηs;b)

= ẽ0 θ
(
Yb − |ηs |

)
f pp(ηs)

[
αncoll(x;b) + (1 − α)

×
(

Yb − ηs

Yb

nA
part(x;b) + Yb + ηs

Yb

nB
part(x;b)

)]
(47)

(note that here ẽ0 does not represent the energy or entropy
density at x = 0 and b = 0). The initial entropy density van-
ishes at space-time rapidity ηs larger than the beam-rapidity
Yb ≈ ln(

√
sNN/mp); particles produced by the participants

of nucleus A/B tend to follow the rapidity of their respec-
tive source, the effect being parametrized by the factors
(Yb ± ηs)/Yb . ẽ0 is an overall normalization factor, whereas
the function f pp(ηs) describes the rapidity profile in p–p
collisions

f pp(ηs) = exp

[
−θ

(|ηs | − �η/2
) (|ηs | − �η/2)2

2σ 2
η

]
. (48)

This is a flat profile for |ηs | ≤ �η/2 and displays a Gaussian
damping at forward/backward rapidities. The extension of
the rapidity plateau �η and the width ση of the Gaussian
falloff are the two further parameters describing the rapidity
dependence in the 3D case. Any other functional form can
be implemented by the user.

ECHO-QGP includes also the possibility of perform-
ing event-by-event hydro calculations with fluctuating initial
conditions. A simple Glauber Monte Carlo routine is pro-
vided by the code (see Fig. 2):

Fig. 2 The participant and binary-collision distribution from the
Glauber-MC simulations of Au–Au events at

√
sNN = 200 GeV

– A sample of Nconf nuclear configurations is generated, ex-
tracting randomly the positions of the nucleons of the A
and B nuclei from a Woods–Saxon distribution. The trans-
verse positions of the nucleons in each nucleus is then
reshuffled into the respective center-of-mass frame.

– For a given configuration a random impact parameter b ∈
[0, bmax] is extracted from the distribution dP = 2πbdb.
Nucleons i (from nucleus A) and j (from nucleus B) col-
lide if (xi −xj )

2 +(yi −yj )
2 < σNN/π . If at least a binary

nucleon–nucleon collision occurred the event is kept and
the information (xA

part, xB
part and xcoll) is stored, otherwise

not. The procedure is repeated Ntrials times for each con-
figuration of the incoming nuclei.

– Each participant nucleon and collision, with a Gaussian
smearing of variance σ , is a source of energy density
(with the parameter α setting the hardness fraction):

e(τ0,x) = K

2πσ

{

(1 − α)

Npart∑

i=1

exp

[
− (x − x

part
i )2

2σ 2

]

+ α

Ncoll∑

i=1

exp

[
− (x − xcoll

i )2

2σ 2

]}

. (49)
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The model has been employed in [71] and tuned, with a
pure dependence on participants (α = 0), to Au–Au data
at RHIC. The rapidity dependence in the 3D case can be
inserted a posteriori as in the optical-Glauber initializa-
tion of Eq. (47). Storing information both on xA

part and

on xB
part it is even possible to account for the different ra-

pidity dependence of the contributions of the participants
from the two nuclei (leading to a direct flow v1 far from
mid-rapidity).

Initial conditions for the flow are chosen in both (2+1)

-D and (3 + 1)-D cases in order to have, at τ = τ0, zero
transverse flow velocities and a longitudinal flow given by
the Bjorken solution (Y = ηs , Y being the fluid rapidity).
Other choices can be easily implemented.

3 Numerical tests

3.1 Numerical scheme and algorithms

The ECHO-QGP code has been built upon the original
ECHO scheme for relativistic hydrodynamics and MHD (in
any GR metric, even time dependent like for Bjorken co-
ordinates). Therefore, it shares with it the finite-difference
discretization, the conservative approach, and the shock-
capturing techniques. The reader is referred to [44] for de-
tails, here we just summarize the main procedures (see
also [72]).

– The spatial grid is discretized along all the directions of
interest as a Nx × Ny × Nz set of cells (Nη in Bjorken
coordinates). Lower dimensionality runs are always ad-
mitted, for example, 2-D tests with boost invariance in
Bjorken coordinates are performed by choosing Nη = 1.

– Physical primitive variables are initialized for t = 0 (or
typically τ = 1 for Bjorken coordinates) as point values at
cell centers. Here, as anticipated, we choose the following
set of 12 variables:

P = (
n, vi,P,Π,πij

)
. (50)

– For each direction, primitive variables are reconstructed
obtaining left (PL) and right (PR) states at cell inter-
faces, where the corresponding conservative variables U
and fluxes F are also calculated according to Eq. (25).

– For each component and at each intercell, upwind fluxes
F̂ k (along direction k) are worked out using the so-called
HLL two-state formula as

F̂ k = ak+Fk(PL) + ak−Fk(PR) − ak+ak−[U(PR) − U(PL)]
ak+ + ak−

,

(51)

where

ak± = max
{
0,±λk±(PL),±λk±(PR)

}
, (52)

and the local fastest characteristic speeds are worked out
according to Eq. (32), providing an approximated solution
to the local Riemann problem.

– High order derivatives of fluxes are calculated for each
direction and source terms are added to provide the right
hand side of the evolution equations. Time derivatives
contained in some of the source terms (like in the expan-
sion scalar) are simply calculated by using their values at
the previous time step.

– The evolution equations are updated in time via a second
or third order Runge–Kutta time-stepping routine.

– At each temporal sub-step, from the updated set of conser-
vative variables we must derive the set of primitive vari-
ables. We use the method described earlier (an external
cycle on vi components with a nested Newton–Raphson
root-finding method for the pressure P ), but other choices
are possible.

– Output of primitive variables and other diagnostic quanti-
ties are provided for selected times.

When not otherwise specified, in the following tests we
well use a second-order Runge–Kutta method for time in-
tegration and a fifth order routine for spatial reconstruc-
tion with monotonicity preserving filter (MP5, see [44]
and references therein). Notice that in viscous runs, the
time step must be also limited by the viscous relaxation
timescales [73]. When these are much smaller than the cor-
responding hyperbolic evolution times, the system may be-
come stiff and implicit time integration may be needed. Fu-
ture improvements will adopt the same techniques used for
resistive MHD described in [46]. Finally, the ECHO code is
parallelized in order to be able to run on any supercomputing
platform.

3.2 Mildly relativistic shear flow in (1 + 1)-D

The diffusion of a one-dimensional shear flow profile may
be followed in time and checked against an analytical so-
lution, provided the flow is only mildly relativistic. A simi-
lar case has already been studied for testing numerical al-
gorithms for relativistic viscosity [73] and also resistive
magneto-hydrodynamics [46].

We perform this (1 + 1)-D test in Minkowskian Carte-
sian coordinates, choosing a velocity profile vy = vy(x). For
sub-relativistic speeds and a constant background state in
terms of energy density and pressure (here we use EOS-
I for simplicity), at any time t of the evolution only vy

will change due to shear viscosity (the bulk viscosity does
not play a role since θ ≡ 0), always preserving γ ≈ 1 and
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e + P ≈ const. In such Navier–Stokes limit, the momentum
equation along y reads

(e + P)∂tv
y + ∂xπ

xy = 0, πxy = −2ησxy = −η∂xv
y,

(53)

which leads, for a constant η coefficient, to the classical 1D
diffusion equation

∂tv
y = Dη∂

2
xvy, Dη = η/(e + P), (54)

with (constant) diffusion coefficient Dη. If we now assume
that vy(x) has a step function profile for t = 0, with constant
values −v0 for x < 0 and v0 for x > 0, the exact solution at
any time t is known to be

vy = v0 erf

[
1

2

√
x2

Dηt

]
. (55)

We run the ECHO-QGP code with these conditions and,
instead of starting from the discontinuous solution, we as-
sume the above profile at the initial time t = 1 fm/c, com-
paring the analytical result with the output at a later time
t = 10 fm/c. The spatial dependence of the fluid veloc-
ity is shown in Fig. 3, where we have assumed v0 = 0.01,
e + P = 4P = 1 GeV/fm3, η = 0.01 GeV/fm2, hence Dη =
0.01 fm. Our result matches the analytic solution throughout
the evolution. The numerical grid is x = [−1.5,1.5] fm, and
Nx = 301 numerical cells have been employed.

3.3 Shock-tube problem in (2 + 1)-D

Shock-capturing numerical schemes, as in the classical hy-
drodynamical case, are designed to handle and evolve dis-
continuous quantities invariably arising due to the nonlinear
nature of the fluid equations. In order to validate these codes,
typical tests are the so-called shock-tube 1D problems. Two
constant states are taken on the left and on the right with re-
spect of an imaginary diaphragm, which is supposed to be
initially present and then removed. Typical patterns seen in
the subsequent evolution are shocks and rarefaction waves.
Here we present a relativistic blast-wave explosion prob-
lem, characterized by an initial static state with temperature
and pressure much higher in the region on the left, namely
T L = 0.4 GeV (P L = 5.40 GeV/fm3) and T R = 0.2 GeV
(P = 0.34 GeV/fm3), as in [49], though the EOS used is not
coincident (thus also results are quantitatively different).

For a more stringent test of our code, we employ this
shock-tube test by placing the initial diaphragm along the
diagonal of a square box (201 points and size 10 fm along
x and y) adopting Minkowskian Cartesian coordinates, and
we let the system evolve from t = 1 up to t = 4 fm/c with
EOS-I and different values of the shear viscosity η/s.

Fig. 3 Spatial dependence of the velocity shown along with the ana-
lytic result at t = 10 fm/c. The grid is made by 301 cells, ranging from
x = −1.5 to 1.5 fm

In Fig. 4 we show vx , the expansion scalar θ , e, and
−2πzz, as in [49], at the final time as a function of x and
along y = 0. Notice the high accuracy of the results and the
absence of numerical spurious oscillations near the shock
front in the ideal case. Gibbs-like effects are visible just in
the expansion scalar, because spatial derivatives in θ and
σ ij are calculated with central schemes (known to fail in
the presence of discontinuities), but these quantities are not
used in the ideal case. When increasing η/s, quantities are
clearly damped with respect to the ideal case, as expected.

3.4 Boost-invariant expansion along z-axis

As a first validation of ECHO-QGP in Bjorken coordinates
we consider a test with no dependence on the transverse
coordinates (x, y) (then the vorticity vanishes), and we as-
sume boost invariance along z-direction, thus quantities do
not depend on ηs either, and we are actually dealing with
a (0 + 1)-D test case. Evolution of uniform quantities will
then be just due to the τ dependence of the gηη term in
the metric tensor, in the absence of velocities. The energy-
momentum tensor simplifies to

T μν ≡ diag
{
e, P + Π + πxx, P + Π + πyy,

(P + Π)/τ 2 + πηη
}

(56)

with πxx , πyy , and πηη the only non-vanishing compo-
nents of πμν . Owing to the tracelessness of πμν and to
the assumed symmetries, one can write 2πxx = 2πyy =
−τ 2πηη ≡ φ. Therefore, we need only one independent
component to specify the shear viscous tensor πμν , though
we remind here that in ECHO-QGP all six spatial compo-
nents are evolved and the trace-free condition is never im-
posed. A constant initial energy-density profile is chosen at
τ = 1 fm/c and the system is then left free to evolve.

The code outputs in time can be actually checked against
an analytical solution, provided first-order theory applies.
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Fig. 4 The velocity component vx , the expansion rate θ , the energy density e, and −2πzz as a function of x for η/s = 0, 0.01, 0.1 at t = 4 fm/c.
The grid is made by 201 × 201 regularly spaced cells, with x and y coordinates ranging from −5 to 5 fm using Minkowski coordinates

The energy equation is then enough to describe the overall
evolution

∂e

∂τ
= −e + P + Π − φ

τ
, (57)

where in the first-order theory Π and φ are obtained from
their Navier–Stokes (NS) values

Π = −ζ

τ
, φ = 4η

3τ
. (58)

In this case, employing EOS-I and assuming constant values
for η/s and for ζ/s, Eq. (57) admits the following analytic
solution [19, 20, 74, 75] for the temperature as a function of
the proper time:

T (τ) = T0

(
τ0

τ

) 1
3
[

1 + 4η/3s + ζ/s

2τ0T0

(
1 −

(
τ0

τ

) 2
3
)]

, (59)

where T0 is the temperature at the initial time τ0. ECHO-
QGP reproduces this analytic solution in the NS limit, as
displayed in Fig. 5 (we have chosen ζ/s = 0 here).

On the other hand, within the second-order theory, these
equations do not admit any analytic solution. However, the
evolution equations of Π and φ, in the case in which their

Fig. 5 Comparison between the evolution of T (τ) computed by
ECHO-QGP applying the first-order Navier–Stokes expressions for
viscous fluxes and the analytic solution. The initial time is set to
τ0 = 1 fm/c and the viscosity-to-entropy ratio is η/s = 0.08

evolution is simply governed by the relaxation part of the
source terms (for simplicity we set as usual τπ = τΠ ), are

∂Π

∂τ
= − 1

τπ

(
Π + ζ

τ

)
,

∂φ

∂τ
= − 1

τπ

(
φ − 4η

3τ

)
. (60)
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Assuming η, ζ and τπ to be independent of the temperature,
Eqs. (60) admits the semi-analytic solution for Π and φ

Π(τ) = Π(τ0) exp
[−(τ − τ0)/τπ

]

+ ζ

τπ

exp(−τ/τπ )
[
Ei(τ0/τπ ) − Ei(τ/τπ )

]
,

φ(τ ) = φ(τ0) exp
[−(τ − τ0)/τπ

]

− 4η

3τπ

exp(−τ/τπ )
[
Ei(τ0/τπ ) − Ei(τ/τπ )

]
,

(61)

where Ei(x) denotes the exponential integral function. The
solution for Π obtained from ECHO-QGP under the same
assumptions is plotted in Fig. 6, and it perfectly agrees with
the analytic result.

Fig. 6 Comparison between the evolution of Π(τ) computed by
ECHO-QGP and the semi-analytic solution describe in the text. The
parameters are τ0 = 1 fm/c, ζ = 0.01 GeV/fm2, and τπ = 1 fm/c

3.5 (2 + 1)-D tests with azimuthal symmetry

Let us now consider a couple of inviscid tests in Bjorken
coordinates, again assuming EOS-I, P = e/3, boost invari-
ance, thus ∂η ≡ 0, but here also evolution in the transverse
plane. However, when the initial state at τ0 is azimuthally
invariant, the (2 + 1)-D evolution with ECHO-QGP can be
compared with analytic results in (1 + 1)-D.

In the first case, a Woods–Saxon profile for the initial en-
ergy density, as appropriate for central nucleus-nucleus col-
lisions, is assumed

e(r, τ0) = e0

1 + exp [(r − R)/σ ] , (62)

where τ0 is the initial time, r = (x2 + y2)1/2 is the radius in
the transverse plane, and R can be thought of as the radius
of the nuclei. The analytical solution for the subsequent evo-
lution, as a function of τ and r , was found in [76] and it will
be compared with our numerical results. The run parame-
ters are R = 6.4 fm, σ = 0.02 fm and an initial temperature
T0 = 0.2 GeV at r = 0. As shown in Fig. 7, there is a per-
fect agreement between the ECHO-QGP results at any time
τ and the analytic solution.

Recently, Gubser [77] has derived another analytic solu-
tion for a (1 + 1)-D conformal fluid (thus with P = e/3)
with azimuthal symmetry in the transverse plane. Then also
this test can be used for a further numerical validation of
ECHO-QGP in (2 + 1)-D. The analytic solution reads

e = ê0

τ 4/3
(2q)8/3[1 + 2q2(τ 2 + r2) + q4(τ 2 − r2)2]−4/3

,

uτ = cosh
[
k(τ, r)

]
, uη = 0,

ux = x

r
sinh

[
k(τ, r)

]
, uy = y

r
sinh

[
k(τ, r)

]
,

(63)

Fig. 7 Spatial dependence of the temperature and of the radial veloc-
ity at different times along with the analytic solution in the case of
a Woods–Saxon initial condition with cylindrical symmetry. Results

obtained with ECHO-QGP in (2 + 1)-D agree very well with the ana-
lytical solution by Baym et al. [76]
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where

k(τ, r) = arctanh

(
2q2τr

1 + q2τ 2 + q2r2

)
, (64)

and the parameter q is a parameter with the dimension of an
inverse length (we set it to 1 fm−1). To perform the test we
choose ê0 = 1 and we set the initial profiles from the above
solutions at τ0 = 1 fm/c; then we record outputs for the en-
ergy density and the radial velocity vr = (u2

x + u2
y)

1/2/uτ

for increasing values of τ . The ECHO-QGP results along
with the analytic solution are shown in Fig. 8 and they show
perfect agreement.

3.6 (3 + 1)-D test with spherical symmetry

We test the ECHO-QGP code in the (3 + 1)-D case in
the presence of a spherically symmetric initial pressure or
energy-density profile. This test is essential to check the
correctness of the viscous implementation by checking the
symmetries which are preserved by the velocity components
during the whole fireball evolution. Here, we investigate the
spatial components of the velocity, vx , vy , and vz. Since this
system possesses spherical symmetry we expect a pure ra-
dial dependence of the fluid velocity v = v(r, t)r/r through-
out all the medium evolution, for both inviscid and viscous
fluids.

To perform this test, the initial pressure profile is chosen
to be of Woods–Saxon type as in Eq. (62), with P and P0

replacing e and e0, now in flat Cartesian coordinates with
r = (x2 + y2 + z2)1/2. The other parameters are chosen as
σ = 0.5 fm, R = 6.4 fm, P0 = 4 GeV/fm3, such that the ini-
tial temperature is 0.307 GeV, and tests are performed with
either EOS-LS and EOS-PCE, precisely to investigate the
behavior of different EOS’s in a realistic (3 + 1)-D case.
The grid extends from −20 to 20 fm, with 101 cells, along

all three directions. The fluid 4-velocity at the initial time
is uμ = (1,0,0,0), and in the viscous case we initialize
πμν ≡ 0 (here ζ/s = Π = 0), since we do not have boost-
ing effects in Minkowski. Viscous runs are performed with
η/s = 0.16 for both EOS-LS and EOS-PCE. Simulations are
performed until t = 10 fm/c, and we have recorded vx , vy ,
vz along their respective axes and plotted them in Fig. 9. All
of them perfectly lie on top of each other, both for the in-
viscid and the viscous cases. Shear viscous effects play the
usual role of smoothening the velocity profiles, as expected.

4 The algorithm for particle spectra

Before illustrating ECHO-QGP results of physical interest
for heavy-ion collisions, it is mandatory to implement a
decoupling routine accounting for the transition from the
fluid description to the final hadronic observables to com-
pare with the data and other authors’ results.

The process of decoupling of hadrons from the fireball
and their subsequent propagation in space-time is very com-
plex and there are different recipes to model it. The most
used scheme is based on the notion of freeze-out. Since the
particle mean free paths strongly depend on the temperature
of the medium one can assume that below a certain tem-
perature Tfreeze particles stop interacting within the fireball
and they propagate as free streaming particles. This is the
so-called kinetic freeze-out and corresponds to the end of
the hydrodynamical evolution of the system. In this scheme
the hadron spectra are calculated using the Cooper–Frye pre-
scription [78]: from the temperature profiles obtained within
the hydrodynamic simulation one first determines the hyper-
surface Σ of constant temperature T = Tfreeze and the total
emission of primary particles is then calculated as a sum
of the thermal emission of cells lying on the freeze-out hy-
persurface. Corrections to the particle spectra related to the

Fig. 8 Comparison of the radial dependence of the energy density e

(left panel) and of the radial velocity vr (right panel) with the Gubser
flow [77] (inviscid case) at τ = 1.0, 1.5, 2.0, 2.5 fm/c. ECHO-QGP

outcomes show a perfect matching with the analytical results. The EOS
is chosen to be EOS-I
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Fig. 9 Comparison at t = 10 fm/c of the spatial components of fluid velocity in a 3D run in Minkowski coordinates. In the left panel we compare
inviscid and viscous runs, while EOS-LS and EOS-PCE are compared in the right panel, for a viscous fluid with η/s = 0.16

decay of unstable particles have been shown to be signifi-
cant and they must be included to reproduce the experimen-
tal data [79, 80].

In the last years, hybrid approaches have been proposed
in which the decoupling is treated as a switch, at a certain
temperature Tswitch, from a hydrodynamical description of
the fireball to a particle transport description [81–89, 91].

For the sake of simplicity and for performing our first
tests of ECHO-QGP, we adopt here the freeze-out scheme
and retain the hybrid approach as an important outlook of
our work. Let us now briefly review the formalism used
for calculating the particle spectra within the Cooper–Frye
scheme. The momentum spectrum of hadrons of species i is
written as

E
d3Ni

dp3
= d3Ni

dypT dpT dφ

= gi

(2π)3

∫

Σ

−pμd3Σμ

exp[−uμpμ+μi

Tfreeze
] ± 1

, (65)

where the index i refers to the hadrons such as pions, kaons,
protons etc., gi and μi are the corresponding degeneracy and
chemical potential and finally pμ is the four-momentum of
the particle.

An improvement with respect to the pure kinetic freeze-
out distinguishes between the temperature at which elastic
interactions between particles cease, Tfreeze, and the chemi-
cal freeze out temperature Tc at which just the inelastic inter-
actions cease. As explained before, below Tc a PCE equation
of state is computed which allows to determine the chemical
potentials μi of each “frozen particle” at decoupling. In this
work we will use the PCE EOS shown in Fig. 1 and also the
one presented in [93].

The use of Eq. (65) requires to evaluate the hypersurface
Σ of constant temperature. In (3+1)-D, determining such a
surface is computationally quite demanding because of the

many different possibilities in which the 3D hypersurface
can intersect the 4D hypercubes of the hydrodynamical sim-
ulation grid [91]. Here we follow a simpler method also used
in [89]: we can imagine the hypersurface to be the collection
of the hypercubes’ faces of those neighbors cells which are
respectively above and below the threshold Tfreeze. In this
case the d3Σμ is composed by the sum (in Bjorken coordi-
nates)

d3Σμ =

⎛

⎜⎜
⎝

dV ⊥τ

dV ⊥x

dV ⊥y

dV ⊥η

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

τ �x�y�ηs sτ

τ �y�ηs�τ sx

τ �ηs�τ�x sy

1
τ

�τ�x�y sη

⎞

⎟⎟
⎠ , (66)

where each volume element of the hypersurface is oriented
by the vector

sμ = −sign

(
∂T

∂xμ

)
. (67)

In this way, we associate to each of these cells a normal
unitary vector oriented toward the direction of negative tem-
perature gradient.

In most cases only one of the components of d3Σμ is dif-
ferent from zero, since the dV ⊥μ is added only if the freeze
out condition is fulfilled. Let us label with TA the tempera-
ture in an arbitrary cell, and TB the temperature of its neigh-
bor in the positive μ (with μ running over the four dimen-
sions). As a first approximation, if (TA − Tfreeze)(Tfreeze −
TB) > 0 then the hypersurface contains the element dV ⊥μ

relative to those cells and direction μ. A more refined pro-
cedure that we here adopt is to construct a cell with val-
ues of temperature and four-velocity interpolated between
the cells A and B. This construction allows to compute the
scalar product in the numerator of (65) at each hypersurface
cell and could give a positive or negative contribution to the
total spectrum depending on the orientation of the cell and
the orientation of the four-momentum of the particle.
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Once the hypersurface is determined, one can calculate
the spectra as functions of the four-momentum pμ which, in
the Bjorken coordinates, reads

pμ =
(

mT cosh(y − ηs),pT cosφ,pT sinφ,

1

τ
mT sinh(y − ηs)

)
, (68)

where y is the rapidity, pT the transverse momentum and

mT = (p2
T + m2)

1/2
the transverse mass.

The observables we will consider in this paper are the
transverse spectrum at mid-rapidity (y = 0) averaged over
the angle φ

1

2π

∫ 2π

0

d3Ni

pT dpT dy dφ
(y = 0,pT, φ) dφ, (69)

the elliptic-flow coefficient v2

v2 =
∫ 2π

0
d3Ni

pT dpT dydφ
(y = 0,pT, φ) cos(2φ)dφ

∫ 2π

0
d3Ni

pT dpT dy dφ
(y = 0,pT, φ) dφ

, (70)

and the rapidity spectrum

dNi

dy
=

∫ 2π

0

∫ +∞

0

d3Ni

pT dpT dy dφ
(y,pT, φ) dφ pT dpT.

(71)

4.1 ECHO-QGP and AZHYDRO freeze-out routines:
comparison in ideal (2 + 1)-D cases

Our procedure to determine the freeze-out surface is some-
how simpler than that employed within other (3 + 1)-D
codes (MUSIC and CORNELIUS [90, 91]). It is therefore
essential to compare our results for the particles spectra with

the results obtained by using other codes. For the (2 + 1)-
D case there are several available codes such as AZHY-
DRO [92, 93] (ideal hydrodynamics) and UVH2+1 [94]
(viscous hydrodynamics). We present here comparisons
with results obtained by using AZHYDRO in which a trian-
gular mesh is determined to approximate the hypersurface.
In particular, we have simulated the hydrodynamical stage
of heavy-ions collisions with AZHYDRO and for calculat-
ing the spectra of primary particles at decoupling we have
used the routines for the freeze-out included in AZHYDRO
and freeze out routine of ECHO-QGP described above. No-
tice that within AZHYDRO the particle distribution func-
tion is assumed to be a Maxwell distribution and the boost
invariance allows to compute analytically the integral on
the η variable in the Cooper–Frye formula. Following this
procedure, the integral on the η variable of Eq. (65) leads
to modified Bessel functions. The parameter set used for
AZHYDRO can be found in Table 1; the equation of state is
EOS-Q of [92, 93].

In Fig. 10 we compare results for primary pions trans-
verse momentum spectra and v2 at several impact param-
eters. The agreement between our results and the ones ob-
tained within AZHYDRO is quite satisfying for values of
b which are relevant from the experimental point of view
(b �6–7 fm). For larger values, deviations of the order of
20 % are present in the v2 spectra at low transverse mo-
menta, pT ∼ 0.1 GeV. It has also been remarked [89, 90]
that in spite of its simplicity, this method to pinpoint the

Table 1 Parameter set used within AZHYDRO for testing the ECHO-
QGP freeze out routine. The pion chemical potential is taken from [93].
The grid spacing here used is �x = �y = 0.4 fm, �τ = 0.16 fm

σNN

(mb)
τ0
(fm/c)

e0
(GeV fm−3)

α b
(fm)

μπ

(GeV)
Tfreeze
(GeV)

40 0.6 24.5 1 0, 3, 6, 9, 12 0.0622 0.120

Fig. 10 Comparison between the AZHYDRO and ECHO-QGP
freeze-out routines. The hydrodynamical evolution has been calcu-
lated with AZHYDRO. (Left panel) Transverse momentum pion spec-

tra at different values of impact parameters (from the top: b =
0,3,6,9,12 fm). (Right panel) pT and b dependence of the pion
elliptic-flow coefficient v2
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freeze out hypersurface is sufficiently accurate for comput-
ing particle spectra and v2. While we have here shown only
the comparisons of pion spectra, the spectra of other species
such as kaons and protons can be computed just by modi-
fying the specific particle properties i.e. the mass, the spin
and the chemical potential in the thermal distribution func-
tion of the Cooper–Frye formula. The corresponding results
show the same good agreement between the AZHYDRO and
ECHO-QGP freeze-out routines.

4.2 Consistency between (2 + 1)-D and (3 + 1)-D

The comparison between the ECHO-QGP and the AZHY-
DRO results on particle spectra in (2+1)-D presented in the
previous section is a crucial test before extending our calcu-
lations to (3 + 1)-D. Having good agreement with AZHY-
DRO, we can now use the ECHO-QGP (2 + 1)-D results as
a benchmark for the (3 + 1)-D calculations.

In order to perform this test we have used the initial con-
ditions specified in Sect. 2.5 for which the energy profile
along the ηs direction is flat up to �η and has then a smooth
Gaussian drop for larger values of ηs . In the transverse di-
rection, the energy profile is the same for the (2 + 1)-D
and the (3 + 1)-D simulations. The lack of boost invariance
in (3 + 1)-D implies that the hydrodynamical quantities in
Eq. (65), temperature and four-velocity, depend on ηs and
thus the integral on this variable must be calculated numeri-
cally. Also, the hypersurface depends now on ηs .

Table 2 reports the parameter set used for the above men-
tioned test of consistency between (3 + 1)-D and (2 + 1)-D
simulations (fully performed with ECHO-QGP). Being a
test of hydrodynamics, we used a simple pion gas equation
of state.

As one can notice in Fig. 11 (top panel), for �η = 1 and
ση = 3 and �η = 3 and ση = 1 the (3 + 1)-D results lie on
top of the (2 + 1)-D results apart from the region at low pT

where in the latter case the thermal distributions are approx-
imated by Maxwell distributions in order to analytically per-
form the integral over ηs . The (2+1)-D spectrum is thus un-
derestimated. For �η = 1 and ση = 1 on the other hand the
(3 + 1)-D curve is lower than the (3 + 1)-D curve due to the
lower extension of the hypersurface. In the bottom panel we
display the elliptic-flow coefficient v2, computed at b = 3
fm in (2 + 1)-D and (3 + 1)-D. Also in this case the results

Table 2 Parameter set used for comparing particle spectra obtained
from the (2 + 1)-D and (3 + 1)-D ECHO-QGP ideal hydrodynamics
outputs. Different values of �η and ση are used (see Fig. 11)

σNN

(mb)
τ0
(fm/c)

e0
(GeV fm−3)

α b
(fm)

μπ

(GeV)
Tfreeze
(GeV)

40 0.6 24.5 1 3.0 0.0622 0.120

are compatible with each other, with a very slight discrep-
ancy at low pT ∼ 0.5 due again to the use of the Maxwell
distribution in the (2 + 1)-D runs.

In (3 + 1)-D, another interesting observable is the rapid-
ity spectrum that we show in Fig. 12. Although we do not
present here a comparison with experimental data, the de-
pendence on y is qualitatively very similar to the one ob-
tained, for instance, in [91], see their Fig. 21. At y = 0 these
spectra represent just the integral of pT of the transverse
momentum spectra in Fig. 12, and we have obtained, con-
sistently, that the �η = 1, ση = 3 and �η = 3, ση = 1 cases
both provide the same result, while for �η = 1, ση = 1 a
lower value of the spectrum is obtained. As y is shifted, one
probes the tails of the freeze-out hypersurface along the ηs

direction. Thus the larger the value of ση the harder is the
spectrum (see the curves corresponding to �η = 3, ση = 1
and �η = 1, ση = 3).

We would like to state here that in the present section the
freeze-out procedure employed does not include the appro-
priate viscous corrections to the particle distributions in the
Cooper–Frye algorithm. We are aware that such corrections
are important for the final vn coefficients, and such an im-
provement will be certainly implemented and tested before

Fig. 11 Comparison of the pion transverse momentum spectra (top
panel) and of the elliptic flow (lower panel) obtained by ECHO-QGP
in (2 + 1)-D and (3 + 1)-D for different parametrizations of the initial
energy density profile in the ηs direction
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applying the model in any realistic situations and comparing
to data.

5 Physics results

In this section we present some selected physics results re-
ferring to initial conditions representative of Au–Au col-
lisions at RHIC (with

√
sNN = 200 GeV, σNN = 42 mb,

R = 6.38 fm, e0 = 30 GeV/fm3, α = 0.15 as in Eq. (43)) ob-
tained with ECHO-QGP, along with comparison with other
existing RHD viscous codes (concerning mainly the freeze-
out routine and the final particle spectra). Results are pre-
sented for various cases, in (2 + 1)-D and (3 + 1)-D, with or
without viscosity and for various impact parameters. They

Fig. 12 Pion rapidity spectra with different parametrizations of the
initial energy density profile in the ηs direction. The setup here used is
given in Table 2

refer to the temporal evolution of the temperature, of the
spatial and momentum anisotropy (ex and ep respectively)
and to the particle spectra and elliptic flow.

Finally, some specific results with fluctuating Glauber-
MC initial conditions are also highlighted, in order to
demonstrate the capability of ECHO-QGP of treating all
kinds of complex initializations, leaving the detailed analy-
sis of the higher-order flow harmonics for the future.

5.1 Temperature and eccentricity evolution

We start considering the time evolution of the central tem-
perature T (τ) (obtained from the local energy density
through the EOS) both for central (b = 0) and non-central
(b 
= 0) Au–Au collisions with RHIC-type initial conditions.
We assume (2+1)-D evolution, to be followed with ECHO-
QGP. Simulations are performed in Bjorken coordinates
with a grid size in the transverse (x−y) plane of 201 × 201
cells and physical dimensions ranging from −20 fm to
20 fm. For (3 + 1)-D runs we use 101 × 101 cells rang-
ing from −20 fm to 20 fm in the transverse plane, and 151
point along ηs , going from −11 to 11 fm.

The dependence of T (τ) on the EOS, on the impact pa-
rameter and on the shear viscosity is displayed in Fig. 13.
The temperature is sensitive to the equations of the state cho-
sen throughout the evolution. As expected, the differences
are more pronounced in the later stages, when the tempera-
ture drops below T = 150 MeV and the effects of the partial
chemical equilibration plays crucial role. Concerning the de-
pendence on the shear viscosity, we notice that its effect is
very limited in the central region, where the fluid velocity is
small. More important is the dependence on the impact pa-
rameter. It is clear that the larger the value of b, the earlier
the occurrence of freeze-out. This is mainly guided by the
impact parameter dependence of the initial energy-density
profile.

Fig. 13 Temperature as a function of τ at the center of the fire-
ball with RHIC-type initial conditions. In the left panel we compare
EOS-LS against EOS-PCE, and ideal RHD against viscous runs with

η/s = 0.08, or 0.16 for b = 7 fm. In the right panel we study the in-
fluence of shear viscosity (η/s = 0.08) against ideal RHD for b = 0,
b = 3.5 fm, and b = 7 fm
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We then move to consider the evolution of the eccentric-
ity in non-central collisions. Hydrodynamics translates the
initial spatial eccentricity of the system—arising essentially
from the non-vanishing impact parameter of the A–A colli-
sion and giving rise to asymmetric pressure gradients—into
a final anisotropy in the momentum spectra of the produced
hadrons. The spatial anisotropy in the transverse plane is
usually quantified, in the case of smooth initial conditions,
in terms of the coefficient [56]

ex = 〈y2 − x2〉e
〈y2 + x2〉e , (72)

where 〈..〉e denotes a spatial average over the transverse
plane, with the local energy density e (or entropy density
s, depending on the choice done in the initialization stage)
as a weight. The momentum anisotropy is estimated, follow-
ing [96], in terms of the components of T μν , as

ep = 〈T xx − T yy〉
〈T xx + T yy〉 , (73)

where 〈..〉 denotes a spatial averaging (over the transverse
plane) with weight factor unity.

Because of the larger pressure gradients along the reac-
tion plane, during the hydrodynamic evolution of the sys-
tem the momentum anisotropy ep is expected to increase
at the expense of the spatial eccentricity ex . The temporal
evolution of ex and ep at RHIC, along with their sensitiv-
ity to the EOS and the magnitude of the viscous effects, are
shown in Fig. 14 for b = 7 fm in (2 + 1)-D. We can observe
that, with higher values of η/s, the growth of the momentum
anisotropy is lower throughout the time evolution, reflect-
ing the role of dissipative effects in taming the collective
response of the system to the pressure gradients.

Next, we consider the sensitivity of ex and ep to the
EOSs employed and the impact parameter. The time evolu-
tion of the spatial and momentum anisotropies is shown, for
b = 3 fm and b = 7 fm, with EOS-I, EOS-LS and EOS-PCE,
with and without shear viscosity (here we have switched off
the bulk viscous effects), in Fig. 15. Both the spatial and
momentum anisotropies are quite sensitive to the EOS em-
ployed in the simulations. The differences among the differ-
ent choices can be observed at the later stages of the colli-
sions both at b = 3 fm and at b = 7 fm. Differences are more
pronounced for the more peripheral collisions. All these ob-
servations still hold in the presence of viscosity.

We now investigate the role of bulk viscosity as far as the
time evolutions of ex and ep is concerned. We have plotted
ex and ep at b = 3 fm and b = 7 fm with and without ζ/s for
two of the tabulated equations of state, EOS-LS and EOS-
PCE in Fig. 16. In both cases, we set η/s = 0.08. The value
of ζ/s is set to 2η/s(1/3 − c2

s ). We observe that the non-
vanishing ζ/s has a negligible impact at the initial times as

Fig. 14 Spatial anisotropy ex and momentum anisotropy ep as a func-
tion of τ in RHIC-type (2 + 1)-D simulations with ECHO-QGP, using
EOS-LS. We compare runs with b = 7 fm and for η/s = 0, 0.08, 0.16

compared to role played by η/s. There are some mild effects
seen at lower temperatures (later stages of the evolution).
This is not surprising, since the temperature behavior ζ/s is
governed by the factor 1/3 − c2

s . All the above observations
are valid for both EOS-LS and EOS-PCE.

Finally, also (3 + 1)-D simulations, with the same set up
(RHIC-type initialization with b = 7 fm, EOS-LS, Bjorken
coordinates), have been performed. Expansion now occurs
also in the ηs direction, as expected, and in Fig. 17 we show
the time evolution of the ex and ep quantities calculated at
ηs = 0, for both the ideal case and the viscous one, with
η/s = 0.08. The behavior is similar to the corresponding
(2 + 1)-D case, and different cuts in the space-time rapid-
ity ηs also produce similar results. We have found that in
some cases the expanding front along ηs shows instabil-
ities in (3 + 1)-D viscous runs (only for Bjorken coordi-
nates). To cure this problem, we adopt a similar strategy as
in [95], where viscous tensor components (and the bulk vis-
cous pressure) are decreased proportionally to P/Pcut when
P < Pcut, where the assumed threshold corresponds to a
temperature T � 45 MeV (for the chosen EOS-LS), well
below the freeze-out limit.

5.2 Particle spectra in ideal (3 + 1)-D and viscous
(2 + 1)-D cases

We will show now results for particle spectra and elliptic
flow obtained using the PCE EOS: the parameters are re-
ported in Table 3.

Table 3 Parameter set used for the (3 + 1)-D ideal hydrodynamics
results of ECHO-QGP. In addition �η = 5.0, ση = 0.8 in Eq. (48)

σNN

(mb)
τ0
(fm/c)

e0
(GeV/fm−3)

α b
(fm)

μπ

(GeV)
Tfreeze
(GeV)

40 0.6 25.0 0.25 3, 5, 7 0.03217 0.130



Eur. Phys. J. C (2013) 73:2524 Page 19 of 26

Fig. 15 Spatial and momentum anisotropies for different EOSs and impact parameters employed in (2 + 1)-D simulations. The ideal case (the
viscous case with η/s = 0.08) is shown in top (bottom) panels

Fig. 16 Spatial and momentum anisotropies for different values of the η/s and ζ/s parameters, for b = 3 and b = 7 fm, and with EOS-LS or
EOS-PCE

We remark again that for a comparison with the experi-
mental data one needs to include the contribution of unsta-
ble particles to the final particle spectra. In this work such
contributions are not implemented. In Fig. 18 we display
the transverse momentum spectra of (direct) pions, kaons,

and protons. For large values of pT our results are compat-
ible with results obtained in the (3 + 1)-D code developed
in [90] (see their Fig. 1) where also a fit of the experimen-
tal data is presented. A value of the pion spectrum of about
0.1 GeV−2 at pT ∼ 2 GeV is obtained. The agreement with
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Fig. 17 Spatial anisotropy ex and momentum anisotropy ep as a func-
tion of τ in RHIC-type (3+1)-D simulations, using EOS-LS. We com-
pare runs with b = 7 fm and for η/s = 0 and 0.08 in the plane with
ηs = 0 space-time rapidity

Fig. 18 pT spectra of pions, kaons, and protons as obtained in
(3 + 1)-D ideal hydrodynamics. Parameters are specified in Table 3.
The grid steps are �x = �y = 0.2 fm �ηs = 0.2, �τ = 0.1 fm/c

[90] is lost at low pT due to lack of resonance feed-down
in our scheme. Indeed in [80] an enhancement of a factor
of 4 is obtained for the pion spectra at pT = 0. We are thus
confident that including the resonance decay will allow to
correctly reproduce the experimental data.

On the other hand, the elliptic-flow results are not so
much affected by the resonance feed-down because it is a
ratio of spectra. Considering for instance the pion v2, we
obtain a value of ∼ 0.16 % at pT = 1.5 GeV, from Fig. 19,
which is quite close to the value obtained in [90] (see Fig. 5
therein). Finally in Fig. 20, we show the rapidity spectra of
pions, kaons, and protons. This observable will be impor-
tant for future developments of ECHO-QGP when compar-
ing with the experimental data. In particular, it will allow
one to better constrain the initial conditions of the hydrody-
namical evolution.

Viscosity provides important corrections to the particle
spectra particularly evident in the pT and b dependence of

Fig. 19 pT and b dependence of the elliptic flow v2 as obtained in
(3 + 1)-D ideal hydrodynamics. Parameters are chosen the same as in
the previous figure

Fig. 20 Rapidity spectra of pions, kaons, and protons as obtained in
(3 + 1)-D ideal hydrodynamics

Table 4 Parameter set used in the comparison between (2+1)-D ideal
and viscous (η/s = 0.08) simulation (see Figs. 21–22)

σNN

(mb)
τ0
(fm/c)

e0
(GeV/fm−3)

α b
(fm)

μπ

(GeV)
Tfreeze
(GeV)

42 1.0 30.0 0.15 3, 5, 7 0.03217 0.130

the elliptic-flow coefficient v2. For this section we limit our
discussion to (2 + 1)-D simulations with the parameters of
Table 4, neglecting viscous corrections to the particle distri-
butions in the Cooper–Frye algorithm.

The chosen equation of state is the one in Sect. 2.4. As
shown in Fig. 21, we obtain the standard result of a suppres-
sion of the v2 when including viscosity. At pT = 1.5 GeV,
η/s = 0.08 and b = 7.0 fm, the suppression is of the v2

of the order of 10 %, which is in agreement with [9] (see
Fig. 10). Finally, in Fig. 22 we display results for the trans-
verse momentum spectra of pions, kaons, and protons with
b = 3 fm. The effect of the viscosity is qualitatively con-
sistent with previous results [22]: up to pT ∼ 1 GeV spec-
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tra are slightly suppressed with respect to the ideal case
and at larger pT are instead enhanced (almost doubled at
pT ∼ 2 GeV). This enhancement with large pT is due to the
growth of the transverse expansion in presence of viscosity
compared to the ideal case, as discussed in Sect. 5.1.

5.3 MC-Glauber initial conditions: a test case

In the present section, we demonstrate the capability of run-
ning (2 + 1)-D ideal and viscous RHD simulations with

Fig. 21 pT and b dependence of the pion elliptic-flow coefficient v2
within (2 + 1)-D ideal and viscous hydrodynamics. Parameters are re-
ported in Table 4

ECHO-QGP in the case of fluctuating Glauber-MC initial
conditions. The local temperature profile is set at the ini-
tial time τ = 1 fm/c for one particular nuclear configu-
ration generated through the Glauber-MC routine imple-
mented in ECHO-QGP (we assume Au–Au collisions with
σ = 0.6 fm, K = 19 GeV/fm2, and α = 0.2); then the sub-
sequent evolution is followed both in the ideal and in the
viscous case. In Fig. 23 the initial and later stages of the
evolution at τ = 5 and 10 fm/c are shown, where the upper
row refers to the ideal run and the lower one to the viscous

Fig. 22 pT spectra for pions, kaons, and protons. Comparison between
results obtained in (2 + 1)-D ideal (sold lines) and viscous (dotted
lines) hydrodynamics. Here b = 5 fm, all the other simulation parame-
ters are reported in 4

Fig. 23 Temperature scans at various times—at τ = 1, 5, and
10 fm/c—obtained from inviscid (upper panel) and viscous (lower
panel) ECHO-QGP simulations with Glauber-MC initial conditions.

The differences between the two cases are clearly visible. The effect of
shear viscosity can be seen in the smoothening the profiles
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run. Here we assume a square numerical box ranging from
−15 to 15 fm and made up by 151 grid points in both di-
rections. The choice for the EOS is EOS-LS, while in the
viscous run we set η/s = 0.08.

Clearly, the dynamical effects of shear viscosity are re-
flected in the smoother spatial profiles: the surfaces of dis-
continuity arising from the transverse expansion of the ini-
tial peaks of energy (shock fronts) are clearly visible only
in the inviscid case. These results demonstrate the capabil-
ity of ECHO-QGP to handle also complex initial conditions
with events displaying sizable fluctuations. The full analysis
including the study of higher-order flow harmonics, of the
impact on the freeze-out stage and of the final particle spec-
tra is beyond the scope of the present investigation and is
left for future work.

6 Conclusions and outlook

In this paper we have presented ECHO-QGP, a code for
(3 + 1)-D relativistic viscous hydrodynamics specially de-
signed for the physics of heavy-ion collisions. The code has
been built on top of the Eulerian Conservative High Or-
der code for General Relativistic Magneto-HydroDynamics
(GRMHD) [44], originally developed and widely used for
high-energy astrophysical applications. ECHO-QGP shares
with the original code the conservative (shock-capturing)
approach—needed to treat shocks and other hydrodynami-
cal discontinuities that invariably arise due to the intrinsic
nonlinear nature of the equations—and the high accuracy
methods for time integration, and spatial interpolation and
reconstruction routines, needed to capture small-scale fluid
features and turbulence. With respect to the original ver-
sion of the code, where only the ideal case was treated, here
second-order dissipative effects have been included through
the evolution of the Israel–Stewart equations for the bulk and
shear stress tensor components, both coupled to the other
hydrodynamical equations. In order for the code to be suited
to QGP applications, four major improvements have been
implemented in the code:

1. Other than the simple Minkowski metric, in any dimen-
sionality, Bjorken coordinates have been included with
possibility to evolve in τ any kind of situation, from uni-
form states up to (2 + 1)-D (boost invariance along ηs )
and full (3 + 1)-D configurations.

2. Any analytical or tabulated equation of state can be used,
even at non-zero baryonic chemical potential; here in
particular we have tested the ideal ultra-relativistic EOS
P = e/3 (EOS-I), a tabulated one arising from weak-
coupling QCD calculations and often adopted in the liter-
ature (EOS-LS) and a couple of tabulated hybrid EOS’s
obtained by matching those for a hadron resonance gas
(in full, EOS-CE, or partial, EOS-PCE, chemical equi-
librium at low temperatures) with lattice-QCD results.

3. All kinds of initializing conditions are possible. Among
them, RHIC experiments are simulated by initializing the
hydrodynamical quantities with smooth energy density
(or entropy density) profiles based on the optical Glauber
model, with both participants and binary collisions con-
tributions, and with different choices for the impact pa-
rameter b. Also fluctuating initial conditions in (2 + 1)-
D and (3 + 1)-D can be initialized with a Monte Carlo
Glauber routine implemented in the code.

4. A new freeze-out routines is developed and implemented
in the ECHO-QGP package. The procedure has been
tested against other available freeze-out routines in the
literature, both in (2 + 1)-D and in (3 + 1)-D. The com-
parisons appear consistent and well convincing, in spite
of the simpler approach followed.

The code has been extensively tested against analytical
solutions, wherever available, or against other authors’ re-
sults, both in Cartesian and Bjorken coordinates, and both
for ideal and for viscous hydrodynamics. Our results always
show smooth and accurate profiles, due to the conserva-
tive and high-order properties of the numerical method em-
ployed. In particular, thanks to the use of high-order meth-
ods, a limited number of grid points is typically enough to
obtain sharp profiles.

The freeze-out routine implemented in the code has been
first tested against another existing one (AZHYDRO) and,
once interfaced to the output of ECHO-QGP, it produced
particle spectra with the expected behavior: stronger radial
flow for larger mass hadrons, mass ordering of the v2 at low
pT , taming of the rise of v2(pT ) in the presence of viscos-
ity (notice that viscous corrections have been so far imple-
mented only in the hydrodynamic evolution and not in the
Cooper–Frye decoupling algorithm).

ECHO-QGP turned out to be able to address very gran-
ular fluctuating initial conditions. This will be fundamental
in view of performing event-by-event hydrodynamic simula-
tions, mandatory in order to interpret non-trivial experimen-
tal measurements like the non-vanishing v2 in central events
and the appearance of odd flow harmonics. The study of
higher harmonics and of event-by-event flow measurements
will provide a rich information on the initial state and on
the transport coefficients of the medium. Equally interesting
will be the application of ECHO-QGP, with its Glauber-MC
initialization, to the case of high-multiplicity p-A collisions,
where recent theoretical [97] and experimental analysis [98,
99] suggest the possibility of formation of a medium with a
collective behavior.

As a further item to address, we would like to include in
ECHO the possibility of dealing with a finite-density EOS
(with possibly a first-order phase transition), so to have a
tool able to provide prediction of interest for the heavy-ion
program foreseen at FAIR. Finally, it is our intention to re-
cover in ECHO-QGP the possibility of evolving also elec-
tromagnetic fields, either assuming the validity of the ideal
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MHD approximation [44], or including magnetic dissipa-
tion with the resistive term in the Ohm law [46]. There are
several motivations for studying the effects of strong mag-
netic fields in ultra-relativistic nucleus-nucleus collisions,
such as the recently proposed Chiral Magnetic Effect [47,
48] which is supposed to produce an observable separation
of positive and negative charges with respect with the reac-
tion plane. Such a tool would be unique among the codes for
QGP studies, and it would represent a very promising cross-
fertilization opportunity between the astrophysical and high-
energy physics communities.
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Appendix A: Fluid description in Minkowski
and Bjorken coordinates

In this appendix we summarize the essential formulas estab-
lishing the link between the fluid description in Minkowski
and Bjorken coordinates. While what contained in the text
is already sufficiently self-consistent, here we wish to es-
tablish a mapping with the notation adopted by other au-
thors [100, 101] and widely employed in phenomenologi-
cal studies, such as blast-wave fits. For the sake of clarity
in this appendix four-vectors in Bjorken coordinates will be
denoted by a “prime” and components of the three-velocity
by a “tilde”; in the text such a distinction will be neglected.

A.1 Minkowski coordinates

Here we specify the notation employed for the different ra-
pidities entering into our RHD setup.

– Fluid rapidity:

Y ≡ 1

2
ln

1 + vz

1 − vz
−→ vz = tanhY (A.1)

with vz the longitudinal component of the fluid velocity v;
– Space-time rapidity:

ηs ≡ 1

2
ln

t + z

t − z
. (A.2)

– Particle rapidity (of the emitted hadron):

y ≡ 1

2
ln

E + pz

E − pz

; (A.3)

The particle four-momentum is conveniently expressed
in terms of its transverse mass m⊥ and rapidity:

pμ ≡ (m⊥ coshy,p⊥,m⊥ sinhy) (A.4)

The fluid four-velocity, defined as

uμ ≡ γ (1,v) = γ (1,v⊥, vz), with γ ≡ 1/
√

1 − v2,

(A.5)

can be recasted in terms of the fluid-rapidity as

uμ = 1
√

1 − cosh2 Y v2⊥
(coshY, coshY v⊥, sinhY). (A.6)

This suggest to define the “transverse velocity”

u⊥ ≡ coshY v⊥, (A.7)

so that

uμ ≡ γ⊥ (coshY,u⊥, sinhY), with γ⊥ ≡ 1/

√
1 − u2⊥.

(A.8)

The scalar product between the particle momentum and the
fluid velocity, entering into the Cooper–Frye decoupling
prescription, reads (with metric [−,+,+,+])
−p · u = γ⊥

[
m⊥ cosh(y − Y) − p⊥ · u⊥

]
, (A.9)

expressing the fact that particles tend to be emitted with ra-
pidity close to the one of the fluid-cell.

In the general case the velocity field of the fluid de-
pends on all the four space-time coordinates: one has u⊥ ≡
u⊥(τ, r⊥, ηs) and Y ≡ Y(τ, r⊥, ηs).

In the case of longitudinal boost-invariance of the fluid
profile one has always

vz = z

t
−→ Y ≡ ηs, (A.10)

so that the fluid velocity reduces to

uμ = γ⊥ (coshηs,u⊥, sinhηs), (A.11)

which only depends on u⊥(τ, r⊥).

A.2 Bjorken coordinates

One can go from the Minkowski coordinates

uμ ≡ (
u0, u1, u2, u3) (A.12)

to the Bjorken (sometimes also known as Milne) coordinates

u′m ≡ [
u′τ , u′x, u′y, u′η] (A.13)
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through the transformation

u′m ≡ ∂x′m

∂xν
uν. (A.14)

One has

u′τ = dτ

dt
u0 + dτ

dz
u3 = γ⊥ cosh(Y − ηs) (A.15a)

u′η = dηs

dt
u0 + dηs

dz
u3 = γ⊥

1

τ
sinh(Y − ηs). (A.15b)

Hence

u′m = γ⊥
[

cosh(Y − ηs),u⊥,
1

τ
sinh(Y − ηs)

]
(A.16)

The four-momentum in Milne coordinates analogously
reads

p′m =
[
m⊥ cosh(y − ηs),p⊥,

1

τ
m⊥ sinh(y − ηs)

]
. (A.17)

Its contraction with u′m and the hypersurface element in
Eqs. (A.16) and (66) allows one to recover the freeze-out
formula employed in the text in Eq. (65) and expressed in
terms of the output variables of ECHO-QGP. Notice that its
contraction with the expression of the fluid four-velocity in
Eq. (A.16) provides the result in Eq. (A.9).

After a further change of variables, introducing the defi-
nitions

ṽη ≡ tanh(Y − ηs)

τ
and ṽx/y ≡ u

x/y
⊥

cosh(Y − ηs)
, (A.18)

one has

u′m = γ̃
[
1, ṽx, ṽy, ṽη

]
, (A.19)

where

γ̃ ≡ γ⊥ cosh(Y − ηs) = 1
√

1 − (̃vx)2 − (̃vy)2 − τ 2(̃vη)2

(A.20)

in agreement with the definition γ̃ ≡ (1 − gij ṽ
i ṽj )−1/2

quoted in the text.
In the case of a longitudinal boost-invariant expansion

one has Y ≡ ηs , so that

u′m = γ⊥[1,u⊥,0]. (A.21)

Appendix B: Source terms

In the present appendix, we write down explicitly the source
terms needed for the evolution of the set of balance laws

as in Eq. (26). For the momentum and energy equations we
have, respectively

S(Si) = |g|1/2
[

1

2
T μν∂igμν

]
, (B.22)

S(E) = |g|1/2
[
−1

2
T μν∂0gμν

]
, (B.23)

whereas for the evolution of the bulk viscous pressure Π

and for the spatial components of the viscous stress tensor
πij more terms are required. We recall here the general def-
initions for the expansion scalar, shear tensor, and vorticity,
which are

θ = dμuμ = ∂μuμ + Γ μ
μνu

ν, (B.24)

σμν = 1

2

(
dμuν + dνuμ

) + 1

2

(
uμDuν + uνDuμ

)

− 1

3

(
gμν + uμuν

)
θ, (B.25)

ωμν = 1

2

(
dμuν − dνuμ

) + 1

2

(
uμDuν − uνDuμ

)
, (B.26)

with

dμuν = gμα
(
∂αuν + Γ ν

αβuβ
)
, (B.27)

Duν = uα
(
∂αuν + Γ ν

αβuβ
)
. (B.28)

Moreover, the Iμν terms are provided by

Iμν
0 = −uα

(
Γ

μ
αβπνβ + Γ ν

αβπμβ
)
, (B.29)

Iμν
1 = gαβ

(
πμαuν + πναuμ

)
Duβ, (B.30)

Iμν
2 = −λ gαβ

(
πμαωνβ + πναωμβ

)
. (B.31)

In the remainder we shall specify to either Minkowski or
Bjorken coordinates.

B.3 Minkowski coordinates

The simplest case is that of Minkowskian Cartesian coordi-
nates (t, x, y, z), with metric gμν = gμν = diag(−1,1,1,1)

(|g|1/2 = 1), and vanishing Christoffel symbols. Thus, no
source terms are needed for the evolution of the energy-
momentum tensor. Covariant derivatives simply become

dtuν = −∂tu
ν, (B.32)

diuν = ∂iu
ν, (B.33)

Duν = ut∂tu
ν + ui∂iu

ν, (B.34)

so for instance the expansion scalar is

θ = ∂tu
t + ∂iu

i, (B.35)

with i = x, y, z. Notice that Iμν
0 ≡ 0, while for Iμν

1 and Iμν
2

the standard definitions apply.
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B.4 Bjorken coordinates

Bjorken coordinates (τ, x, y, ηs) have still a diagonal metric
gμν = diag(−1,1,1, τ 2), and gμν = diag(−1,1,1,1/τ 2)

(|g|1/2 = τ ), but here ∂τ gηη = 2τ 
= 0 leading to the non-
vanishing Christoffel symbols Γ τ

ηη = τ and Γ
η
ητ = 1/τ .

Then, while the source term for the momentum equation is
still zero, that for the energy equation becomes

S(E) = −τ 2T ηη. (B.36)

Non-Minkowskian covariant derivatives are

dτuη = −(
∂τ u

η + uη/τ
)
, (B.37)

dηuτ = (
∂ηu

τ + τuη
)
/τ 2, (B.38)

dηuη = (
∂ηu

η + uτ /τ
)
/τ 2, (B.39)

Duτ = uτ ∂τ u
τ + ui∂iu

τ + τuηuη, (B.40)

Duη = uτ ∂τ u
η + ui∂iu

η + 2uτuη/τ, (B.41)

with i = x, y, η, and the expansion scalar is now

θ = ∂τ u
τ + ∂iu

i + uτ /τ. (B.42)

In Bjorken coordinates the non-vanishing Iμν
0 ≡ 0 terms are

Ixη
0 = −(

uτπxη + uηπτx
)
/τ, (B.43)

Iyη

0 = −(
uτπyη + uηπτy

)
/τ, (B.44)

Iηη

0 = −2
(
uτπηη + uηπτη

)
/τ, (B.45)

while Iμν
1 and Iμν

2 are defined in the usual way.
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