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Abstract: Multiple interactions between parton showers and the surrounding QCD mat-

ter are expected to underlie the strong medium-modifications of jet observables in ultra-

relativistic heavy ion collisions at RHIC and at the LHC. Here, we note that such jet-

medium interactions alter generically and characteristically the color correlations in the

parton shower. We characterize these effects in a color-differential calculation of the

medium-induced gluon radiation spectrum to first and second order in opacity. By inter-

facing simple branching histories of medium-modified color flow with the Lund hadroniza-

tion model, we analyze how the medium modification of color correlations can affect the

distribution of hadronic fragments in jets. Importantly, we observe that jet-medium in-

teractions give rise to the medium-induced color decoherence of gluons from the parton

shower. Since hadronization respects color flow and since each color singlet in a parton

shower is hadronized separately, this medium-induced color decoherence leaves character-

istic signatures in the jet fragmentation pattern. In particular, it can contribute to the

quenching of leading hadron spectra. Moreover, it can increase strongly the yield of soft

hadronic fragments from a jet, while the distribution of more energetic hadrons follows

naturally the shape of a vacuum-like fragmentation pattern of lower total energy.
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1 Introduction

In ultra-relativistic nucleus-nucleus collisions at RHIC and at the LHC essentially all

hadronic particle distributions at high transverse momentum show strong modifications

if compared to baselines established in proton-proton collisions. In particular, one observes

a strong suppression of all single inclusive hadron spectra up to the highest transverse mo-

menta (pT ∼ 100GeV) analyzed so far [1, 2], and significant modifications of jet structures

up to jet energies exceeding 300GeV [3–5]. Characteristic features of this jet quenching

phenomenon include its dependence on centrality and azimuthal orientation (both of which

– 1 –



J
H
E
P
0
7
(
2
0
1
2
)
1
4
4

yielding information on the path-length of in-medium propagation), its dependence on kine-

matic variables including the center of mass energy of the collision and the transverse mo-

mentum of the hard process, its approximate independence on the produced hadron species

(at least in the limited low-pT range in which the latter has been measured to date), and

the absence of quenching effect for high-pT prompt photons and Z-bosons. The totality of

these data from LHC and the data from RHIC [6, 7] motivates a dynamical picture of jet

quenching according to which partons are produced in nucleus-nucleus collisions via high-

momentum transfer processes at standard perturbative rates, but lose energy and branch

differently in the dense QCD medium through which they propagate. Starting with the

seminal works of Baier, Dokshitzer, Mueller, Peigné and Schiff (BDMPS) [8]and Zakharov

(Z) [9] in the 1990s, a large number of parton energy loss calculations aim at formulating

and exploring this jet quenching phenomenon in a QCD-based setup (for recent reviews,

see [10–13])

In parton energy loss calculations, one generally considers a class of processes in which

high-energy partons, produced in nucleus-nucleus collisions, interact via gluon exchanges

with the surrounding QCD matter while branching. Color exchange between the partonic

projectile and the QCD medium is intrinsic to such interactions. As a consequence, the

color connection within a high-energy parton shower and between the shower and the rest

of the event will be modified by the medium. Hadronization respects color correlations

in mapping partonic color-singlet configurations into hadrons and can thus be sensitive to

medium-modified color flow. Since the input of any hadronization routine is different if

the color connections are different, medium modifications of the hadronization process may

be expected to persist even if the latter occurs time delayed and thus outside the QCD

medium. Taking such qualitative considerations into account, several groups have explored

heuristic models of medium-modified hadronization in the recent past, pointing to possible

changes in the hadrochemical composition of jets [14] or in the yield and distribution of

baryons [15]. Also, some basic scenarios of medium-modified hadronization were explored

in Monte Carlo simulations of medium-induced parton energy loss [16]. Notwithstanding

these efforts, QCD-based calculations of jet quenching have remained mainly focused on

kinematic changes of parton branching. Here, we extend the calculation of medium-induced

gluon radiation of BDMPS-Z to the study of the color-differential case. We investigate,

in particular, which medium-modified color connections can arise in the interactions of a

parton shower with a QCD medium. Based on these calculations, we shall then test the

response of hadronization models to a medium-modified color flow and discuss conceivable

experimental signatures.

Our work is organized as follows. In section 2, we set the stage by discussing qualita-

tive features of the color flow of a parton shower developing in a QCD medium and how

medium-modified color connections would affect the input of standard hadronization mod-

els. Sections 3 and 4 provide an explicit color-differential analysis of the medium-induced

gluon radiation spectrum to, respectively, first and second order in opacity. We discuss

which new medium-induced color correlations arise, how the weight of these contributions

depends on the relation between the momentum and length scales in the problem (i.e. on

the formation times), and how higher orders in opacity enhance the probability that the
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radiated gluons are decohered in color from the leading partonic fragments. The readers

who wonder more about the conceivable effects of medium-modified color flow on jet ob-

servables, but are less interested in the technical aspects of our calculation, may jump in

a first reading directly to section 5. There, we investigate how the output of standard

hadronization models will change if they are interfaced with the characteristic medium-

modified color flow patterns identified in our calculations of sections 3 and 4. Much of this

discussion will focus on the Lund string fragmentation model, but we discuss also implica-

tions for cluster hadronization models. Section 5, read together with section 2, provide a

sufficiently self-contained digest of our qualitative arguments and of the essential message

conveyed by our paper. We finally summarize and discuss our findings and provide an

outlook to further open questions.

2 Medium modification of parton splittings and their color connections

To set the stage for the study of medium-modifications of high-pT processes to be carried

out in this paper, we start from the ‘vacuum’ baseline of a hard partonic interaction in

the absence of medium effects. To be specific, we first consider the case of a quark of

color l from ‘hadron 1’ (proton/nucleus) that hard scatters on a quark of color i from

‘hadron 2’ (proton/nucleus) and subsequently radiates a gluon in the showering stage. To

leading order in the coupling constant αs (when the hard scattering occurs via a single

gluon exchange) and to leading order in the number of colors Nc (when gluons can be

represented as quark-anti-quark pairs), this vacuum process is depicted in figure 1. In

order to ensure color neutrality, the colliding hadrons — here and in the following —

will be depicted schematically as two opposite color charges. In the following sections,

we shall calculate medium-modifications of such color-differential partonic processes and

discuss how the medium-modified color flow affects their hadronization. Color connections

are shown schematically in figure 1 by supplementing the quarks of color l and i in the

incoming nuclei with anti-quarks of the corresponding color. These anti-quarks should be

thought of as formal placeholders for what remains of a hadron once a quark of color l or

i has been taken from it. They do not partake in the partonic interaction, but provide the

color reservoir with which the scattered quarks are color correlated.

The dynamics underlying hadronization is not understood from first principles. It is

known, however, that the color flow of the underlying perturbative process is relevant and

this is implemented in modern, phenomenologically successful models of hadronization,

such as the Lund string-fragmentation in Pythia or the cluster-decay in Herwig. Here

we discuss shortly how information about the color flow in the partonic process enters these

models.

Cluster hadronization models, as implemented e.g. in the Herwig event generator [17],

group the result of a perturbative shower evolution into a set of color singlet clusters

by splitting each gluon in the final state into a qq̄-pair; clusters are then decayed and

hadronized independently. This is illustrated in figure 1 (left), where the quark k is com-

bined with the anti-quark of the split gluon into a cluster. The most energetic hadron is

then typically a fragment of this cluster, and the distribution of the fragments will depend
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Figure 1. The vacuum baseline: a hadron-hadron collision with a hard process followed by a

q → qg splitting in the shower stage. Color-flow in the large-Nc limit is shown explicitly and the

color-singlets (a cluster in the left panel, a string in the right panel) to be interfaced with the

hadronization routine (Herwig cluster-decay or Pythia string-fragmentation, respectively) are

displayed in color.

on the momentum of the cluster and on its invariant mass. Alternatively, the Lund model,

as implemented e.g. in the Pythia event generator [18], groups the same perturbative

information into a set of color strings that start with a quark, follow the color flow by

including gluons as kinks, and end on an anti-quark; these color singlet strings are then

hadronized (through excitation of qq̄ pairs from the vacuum) according to a prescription

that requires kinematic information about both the end-points of the string and all the

kinks. The multiplicity and distribution of final hadrons will then depend significantly on

the ‘length of the string’, that is on the separation of the quark and anti-quark end-points

in momentum space.

The presence of a medium with which high-energy partons can exchange color can

clearly alter the color connections described above and, by changing the properties of the

clusters/strings, have an effect on the final hadron spectra. In the remainder of this section

we illustrate the essential ideas, focusing on the simple situation of a single interaction of

the hard parton with the medium. We treat the cases of an incoming quark and gluon

separately.

2.1 Medium-induced color flow for a quark projectile to first order in opacity

‘Jet-quenching’ calculations consider the interaction of high-energy partons in the dense

QCD medium produced in heavy ion collisions. In figures 2 and 3, we display the simplest

case of such an interaction: an elastic scattering of a high-energy quark in the plasma

induces the radiation of a gluon. The interaction between the quark projectile and the

medium occurs through the exchange of a single gluon, depicted here as a qq̄-pair in the

large Nc-limit.

For the configuration in figure 2, the ‘leading’ color singlet cluster, the one containing

the quark k, shows the same color structure as the vacuum baseline, the color-flow connect-

ing the high-pT quark with the anti-quark component of the gluon. In the Lund picture,

the string containing the leading quark k links to the radiated gluon as in the vacuum
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Figure 2. Example of a hard q q → q q event embedded in a nucleus-nucleus collision in which

one of the high-pT quarks interacts once with the surrounding QCD matter which induces gluon

radiation. Here, and throughout the paper, the medium is described as a color neutral reservoir,

represented schematically in the figure by two opposite color charges. Gluons are denoted by qq̄-

pairs. The red lines denote the color singlet into which the leading quark k is grouped to form

a cluster (left-hand side) or a Lund-string (right-hand side) in the corresponding hadronization

models.
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Figure 3. Same as figure 2, but for the case that the high-pT quark radiates the gluon prior to

interacting with the medium.

baseline in figure 1, but now ends on an anti-quark from the medium. However, similarly

to the vacuum case, this end point sits at low transverse momentum (with respect to the

energy of the hard parton). For the above reasons, we shall refer to the color configuration

depicted in figure 2 as vacuum-like or — emphasizing the link of the radiated gluon with

the projectile fragment — projectile-connected.

Figure 2 is only one possible color structure that can emerge from a single interaction

of the projectile with the QCD medium. The second possibility is shown in figure 3,

where (from the point of view of color flow) interaction with the medium occurs after the

gluon emission. As a consequence, the leading color singlet cluster combines a quark at

projectile energy with a target component at low (thermal) pT . In [19] the invariant mass

of this cluster was shown to be parametrically larger than the one of the cluster in figure 2.

Analogously, in the Lund framework the leading string connects the quark k directly to
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Figure 4. The (N = 1 in opacity) gluon-radiation amplitude arising from a single interaction of

the projectile with the scattering centers of the medium.

the target. The radiated gluon is, in both descriptions, color decohered from the projectile

and will contribute only to an increase of the multiplicity of soft hadrons. In the following,

we shall refer to these color configurations as medium-modified or gluo-decohered.

We finally relate this discussion to the diagrams in figure 4 that are usually drawn

for the calculation of parton energy loss within an opacity expansion. In the figure, the

initial hard process is sub-summed in a dark blob from which a single high-pT quark line

emerges at the light-cone time x+0 (employing light-cone coordinates will be convenient

in the following). The interaction of the high-pT quark with the medium is described in

terms of one-gluon exchange with a colored scattering center, or in terms of multiple such

one-gluon exchanges. There is a direct correspondence between the Feynman diagrams in

figure 4 and the ones displaying the color-flow in the large-Nc limit in figures 2 and 3. One

easily checks that the first amplitude in figure 4 corresponds to the color flow shown in

figure 2, while the second diagram refers to the color configuration depicted in figure 3.

Finally, the amplitude with the triple gluon vertex contributes to both color channels shown

in figures 2 and 3 (for details, see section 3). This correspondence prompts us to label the

two color channels as Final State Radiation (FSR) and Initial State Radiation (ISR),

depending on whether the gluon radiation occurs after or before the elastic scattering.

A detailed color-differential calculation of medium-induced gluon radiation starting

from the diagrams in figure 4 will be presented in section 3.

2.2 Medium-induced color flow for a gluon projectile to first order in opacity

For the case of a high-pT gluon produced in a hard scattering process, a larger number of

color channels is involved. In figure 5 we show the color configurations that arise to first

order in opacity.1 For each case, we sketch only the associated Lund string that contains

the most energetic gluon.

In the large-Nc limit, a gluon is represented as a quark-anti-quark pair. There are

contributions to medium-induced parton branching in which both the scattering and the

radiation occur off the q (q̄) leg of the projectile gluon while the q̄ (q) leg is a silent spectator.

1Here and in the following, we distinguish the two daughter gluons in the medium-modified g → g g

splitting as leading (i.e. carrying 1−xg ∼ 1) and subleading (i.e. carrying xg ≪ 1), respectively. Exchanging

these labels of the two daughter gluons would amount to exchanging the diagrams on the left and right

column of figure 5.
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In close analogy to the case of a quark projectile, we distinguish four cases in which — from

the point of view of color flow — the gluon branching occurs either on the quark or on the

anti-quark leg, and either after (Final State Radiation) or before (Initial State Radiation)

color exchange with the medium. We refer to these four cases as FSR(q), FSR(q̄), ISR(q),

ISR(q̄). In addition, there are two channels in which the gluon radiation is connected, in

the large-Nc limit, to the q-leg (q̄-leg) of the high-pT gluon while color-exchange with the

medium occurs via the q̄-leg (q-leg), see last row of figure 5. We anticipate that these

last two channels will provide a subleading contribution to the spectrum in the case of

soft (xg ≪ 1) gluon radiation. An explicit evaluation of the color-differential radiation

spectrum will be presented and discussed further in section 3 and in appendix A. Here, we

note that the Lund string including a high-pT gluon will inevitably have both end-points

at (anti)quarks that typically carry low transverse momentum. It is a particularly ‘long’

string in the sense that it stretches from low-pT to high-pT and back again.

3 Color flow and radiation spectrum in the N = 1 opacity expansion

In this section, we provide a QCD-based color differential calculation of the medium induced

gluon radiation process discussed in section 2. We do so within the framework of parton

energy loss first formulated by Baier, Dokshitzer, Mueller, Peigné and Schiff (BDMPS) [8].

The QCD medium is parametrized, following the Gyulassy-Wang model [20], as a collection

of static scattering centers at a discrete set of space time points xn giving rise to a potential

Aµ(x). We work in light-cone coordinates and in a high-energy approximation in which (in

the light-cone gauge A+ = 0) only the ‘−’ light-cone component for the scattering potential

is relevant

A−(x) ≡
N
∑

n=1

∫

dq

(2π)2
eiq·(x−xn)A(q) δ(x+−x+n ) T

an
(n) ⊗ T an

(R) . (3.1)

Here, R denotes the representation of the parton suffering the elastic scattering. It is

customary to formulate calculations of parton energy loss in a rotated frame in which the

longitudinal axis points along the initial direction of propagation of the high transverse

momentum parton. This parton has thus a large initial longitudinal momentum and no

initial transverse momentum. During its in-medium propagation it will accumulate trans-

verse momentum q from interactions with the medium, and will lose a light-cone energy

fraction xg by emitting a gluon of transverse momentum kg. For a parton of mass M and

virtuality Q, the incoming and outgoing momenta read

pi =

[

p+,
M2 +Q2

2p+
,0

]

, pf =

[

(1− xg)p
+,

(q − kg)
2 +M2

2(1− xg)p+
, q − kg

]

, (3.2)

and for the gluon four-momentum and polarization vector one has

kg =

[

xgp
+,

k2
g

2xgp+
,kg

]

, ǫg =

[

0,
ǫg · kg

xgp+
, ǫg

]

. (3.3)

To illustrate the essential ideas within a sufficiently simple setup, we calculate in this

section explicit color differential expressions for the gluon radiation at N = 1 order in the

opacity expansion.
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Figure 5. The six different color configurations that arise to first order in opacity for a high-pT
gluon. Curved colored lines represent the ‘leading’ Lund strings, i.e. the ones connected to the

most energetic parton. Representing the high-pT gluon as a qq̄-pair, there are 4 contributions

corresponding to scattering + Final State Radiation on the same quark or anti-quark leg (diagrams

in first row) and to the corresponding terms for the Initial State Radiation case (diagrams in

second row): in these four channels the second component of the gluon acts as a spectator. The

contributions in the third row for which the radiated gluon is emitted from the q-leg while the

medium couples to the q̄-leg of the high-pT gluon (or vice-versa) are suppressed in the soft (xg ≪ 1)

limit.

3.1 Color-differential gluon radiation off a quark: the case N = 1, x+0 = −∞

We consider first the particularly simple case of a high-energy quark produced in the distant

past (x+0 = −∞) and that interacts just once with the medium. The diagrams contributing

to this process are shown in figure 6. The amplitude corresponding to gluon emission after

the scattering (first diagram in figure 6) takes the simple form

iM(a) = −ig (tata1)
N
∑

n=1

pf ·ǫg
pf ·kg

(2p+)A(q) eiq·xn T a1
(n) . (3.4)
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Figure 6. The three diagrams contributing to the gluon radiation off an on-shell parton suffering

a single scattering in an external color field.

Analogously, one can write the expressions for the other two Feynman diagrams shown in

figure 6. The sum of these three contributions can be written in a compact form

iM = iM(a) + iM(b) + iM(c)

= −2ig [ta, ta1 ]
N
∑

n=1

[

ǫg ·kg

k2
g+x2gM

2
− ǫg ·(kg−q)

(kg−q)2+x2gM
2

]

(2p+)A(q) eiq·xn T a1
(n) . (3.5)

Here and in the following, we work in the soft (xg ≪ 1) limit in which terms subleading

in xg are neglected. However, we have kept in eq. (3.5) terms of order x2g M
2, so that the

discussion can readily be extended to deal with the heavy-flavor case. The color-inclusive

spectrum of radiated gluons is obtained from |M|2 after averaging (summing) over the

initial (final) states:

k+g
dNg

dkgdk
+
g

≡ 1

σel
k+g

dσrad

dkgdk
+
g

= CA
αs

π2

〈

[K0 −K1]
2
〉

, (3.6)

where the notational shorthands

K0 ≡
kg

k2
g+x2gM

2
, K1 ≡

kg−q

(kg−q)2+x2gM
2
, (3.7)

have been used, and the momentum kicks q received from the medium were averaged

according to the corresponding elastic cross section:

〈

. . .
〉

≡
∫

dq

(

1

σel

dσel

dq

)

(. . . ) =

∫

dq |A(q)|2(. . . ) . (3.8)

In the M → 0 limit, the well-known Gunion-Bertsch spectrum

k+g
dNg

dkgdk
+
g

= CA
αs

π2

〈

q2

k2
g(kg−q)2

〉

, (3.9)

is recovered. Notice that once the radiation spectrum is normalized by its elastic cross

section, the overall color factor CA is universal, irrespective of whether the incoming pro-

jectile is a quark or a gluon. The elastic scattering cross section entering eq. (3.8) is often

– 9 –
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chosen to be of Yukawa-type, |A(q)|2 ∝ µ2
D/
(

q2 + µ2
D

)2
, but we shall not rely on a specific

functional shape of |A(q)|2 in the following.

Extending the derivation of the Gunion-Bertsch spectrum to the color-differential case

is straightforward. After identifying in the three-gluon vertex ∝ [ta, ta1 ] the two different

‘color-orderings’, one writes the total radiation amplitude as:

iM = iMa a1 + iMa1 a , (3.10)

where Ma a1 ∝ tata1 and Ma1 a ∝ ta1ta, respectively. Here, the color ordering a a1 is that

of a gluon emitted in the final state after the scattering (FSR) whereas the color ordering

a1 a is that of an initial state radiation (ISR). We therefore identify

FSR ↔ aa1 and ISR ↔ a1a. (3.11)

Since the notions ISR and FSR are physically more intuitive than the explicit labeling

of the channels through color indices, we shall adhere to them where no confusion can

arise. However, the labels FSR and ISR are in general insufficient to fully specify the

color channel, and this will prompt us to use color indices where needed. The advan-

tage of separing the color channels is that in the cross section the interference between

the two contributions is suppressed by a factor 1/N2
c , since Tr(tata1ta1ta) = C2

FNc and

Tr(tata1tata1) = −(1/2Nc)CFNc. Thus,

σrad = σrad
aa1 + σrad

a1a +O(1/N2
c ) , (3.12)

from which one obtains, to leading order in Nc, the spectrum of radiated gluons for each

color channel. Keeping track of the exact dependence on the energy fraction carried by the

emitted gluon one finds

k+g
dNg

dkgdk
+
g

∣

∣

∣

∣

aa1

=
Nc

2

αs

π2

〈

[

K0 −K1

]2
〉

, (3.13)

k+g
dNg

dkgdk
+
g

∣

∣

∣

∣

a1a

=
Nc

2

αs

π2

〈

[K0 −K1]
2
〉

, (3.14)

where we have used the shorthand K0 ≡ kg−xgq

(kg−xgq)2+x2
gM

2 . To leading order in xg (i.e. in

the soft limit), one sees that both color channels have exactly the same weight and that

the sum of the two contributions yields eq. (3.6). In general, however, there is no general

argument for why different color channels should contribute equally. To illustrate this point

already here, we have kept in K0 the subleading dependence on xg.

3.2 Color-differential gluon radiation off a gluon: the case N = 1, x+0 = −∞
So far, the calculations in this section have focused on the case of a projectile quark that

radiates a gluon in response to medium-induced scattering. For an anti-quark projectile,

the result is completely analogous and does not require separate discussion. For a gluon

projectile, however, one finds a larger set of distinct color configurations, as discussed

already in section 2.2 and shown in figure 5. Here we discuss this case explicitly for a
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gluon produced in the distant past. We first note that, identifying in figure 6 the projectile

line with a gluon, three Feynman diagrams (a), (b) and (c) contribute to the radiation

amplitude. To be specific, we label the color of the incoming gluon as d. This gluon splits

into the most energetic ‘projectile’-fragment of color b and a radiated gluon of color a. The

color exchanged with the medium is labeled as a1. In terms of the generators TA of the

adjoint representation, the corresponding contributions to the radiation amplitudes have

the color structure:

M(a) ∝
(

T a
A T a1

A

)

bd
, M(b) ∝

(

T a1
A T a

A

)

bd
, M(c) ∝

([

T a
A , T a1

A

])

bd
. (3.15)

Expressing the generators TA in terms of the structure constant of the Lie algebra, one

can conveniently exploit relations like (T aT a1)bd = 2Tr
(

[tb, ta][ta1 , td]
)

to identify the color

channels involved. Due to the invariance of the trace for cyclic permutations only 6 dis-

tinct color configurations arise. There is a one-to-one correspondence between these 6 in-

dependent permutations and the six color differential diagrams for medium-induced gluon

radiation shown in figure 5. One finds

FSR(q) ↔ baa1d , FSR(q̄) ↔ bda1a ,

ISR(q) ↔ ba1ad , ISR(q̄) ↔ bdaa1 ,

RqSq̄ ↔ bada1 , Rq̄Sq ↔ ba1da . (3.16)

In the calculation of the radiation cross section, interference terms between these six con-

tributions correspond to non-planar diagrams and are subleading in the large-Nc limit. In

appendix A, we provide explicit expressions for the amplitudes (3.15) and their six dis-

tinct color-differential contributions (3.16). From these expressions, one sees easily that

the contributions RqSq̄ and Rq̄Sq are suppressed by a factor O(xg) compared to the other

four terms. Up to O(xg) corrections (hence consistently with the approximation assumed

in getting the color-inclusive GB spectrum), the terms that describe initial or final state

radiation off a q or q̄-leg provide color-differential radiation cross sections of equal size.

After summing over the final and averaging over the initial polarization of the gluons, each

of these four contributions takes the form

k+
dN

dk+dk

∣

∣

∣

∣

[i]

=
Nc

4

αs

π2

〈

q2

k2(k − q)2

〉

, (3.17)

with i=FSR/ISR(q/q̄). Summed together, these 4 leading contributions lead to the inclu-

sive result:

k+
dN

dk+dk
= CA

αs

π2

〈

q2

k2(k − q)2

〉

. (3.18)

In summary, these results show that at small xg and in the large Nc limit, the N = 1

radiation spectrum of a projectile gluon can be viewed as an incoherent superposition of

the medium-induced radiation of a quark (with a silent anti-quark spectator), and of an

anti-quark (with a silent quark as spectator). Modifications to this picture, arising from

the qualitatively novel color configurations (RqSq̄ and Rq̄Sq), are suppressed in the soft

limit by a factor O(x2g).
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a

x+
0 x+

~k⊥

M0

=
p p′

p′

p

Figure 7. The vacuum-radiation diagram: the dark blob denotes the hard process in which the

high-momentum parton is produced (off-shell) inside the medium. In the right panel we keep track

of the color flow.

3.3 Color-differential medium-induced gluon radiation: the case N = 1, x+0 = 0

The gluon spectrum (3.9) vanishes in the absence of a medium, consistently with the

idea that a parton coming from the distant past is on-shell. The situation realized in a

hadronic collision is different. There, high-energy partons are produced around the time

of the collision, at x+0 = 0 say, and they branch even in the absence of further in-medium

interactions. Here, we calculate the medium-modification of this vacuum radiation. That

is, we consider the N = 1 corrections in opacity to the ‘vacuum’ splitting process shown in

figure 7. The amplitude for this vacuum baseline is written as

iM0 = (igta)[(2pf+kg)·ǫg]
i

(pf + kg)2−M2
J(pf+kg)e

i(pf+kg)x0 , (3.19)

where the current J(pf+kg) represents the hard production process. The resulting spectrum

reads

k+
dσvac

dk+dkg
= dσhardCR

αs

π2
K2

0, (3.20)

with its characteristic collinear divergence in the massless limit and dead-cone effect sup-

pressing the radiation of small-angle gluons in the case of emission off a massive quark,

where K2
0 = k2

g/
(

k2
g + x2gM

2
)2
. In general, the radiation amplitude can be expanded in

the number of gluon exchanges with the medium,

iMrad = iM0 + iM1 + iM2 + . . . (3.21)

To perform a calculation that is complete to first order in opacity, the above expansion

must include not only the complete set of one-gluon exchanges between partonic projectile

and medium M1, but also a specific subset, which we label Mcont
2 , of two-gluon exchanges.

Contributions to first order in opacity arise both from 〈|M1|2〉 and Re 〈M2M∗
0〉.

The medium average 〈. . . 〉 involves a color trace over the target and an integration

over the transverse position of the scattering centers. For the two scattering centers that

enter the term Re 〈M2M∗
0〉, these averages reduce to

Tr
(

T a1
(n)T

a2
(n′)

)

≡ δnn′δa1a2TF/A,

∫

dxne
−i(q1+q2)·xn = 2πδ(q1 + q2) , (3.22)

where TF = (1/2) and TA = Nc for scattering off a quark or a gluon from the medium,

respectively. As a consequence, after average over the target, the non-vanishing contribu-

tions to Re 〈M2M∗
0〉 arise from processes where the two gluons link to the same scattering

– 12 –
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a1 a

Mcont
2(d)

x+
0 x+

x+
n

~k⊥

a1 a

Mcont
2(c)

x+
0 x+

x+
n

~k⊥ − ~q⊥

a

a1

Mcont
2(a)

x+
0

x+
n

x+

~k⊥

a1

a

Mcont
2(b)

x+
0

x+
n

x+

~k⊥

a2 a2

a2

a2

Figure 8. The gluon-radiation amplitude arising from interacting twice with the same scattering

center of the medium. In the N = 1 opacity expansion, after the target average (over color and

xn), the diagrams contribute to the single-gluon spectrum with an interference term decreasing the

weight of the vacuum radiation.

center in the medium and where neither color nor transverse momentum is transferred from

medium to the fragmenting q → q + g system. It is usual to refer to these contributions

as contact terms and they are needed for a formulation that conserves probability, thus

playing the role of virtual corrections. The contact terms contributing to M2 are shown

in figure 8. To first order in opacity, one has

〈

|M0 +M1 +Mcont
2 + . . . |2

〉

= |M0|2 +
〈

|M1|2
〉

+ 2Re
〈

Mcont
2 M∗

0

〉

+ . . . . (3.23)

The radiation amplitude can be recast in a form more suitable for a color differential

calculation:

M0 +M1 +Mcont
2 = Maa1 +Ma1a +Ma , (3.24)

where

M1 = Maa1 +Ma1a and M0 +Mcont
2 = Ma. (3.25)

In contrast to the left-hand side of (3.24), interference terms between different contributions

on the right hand side vanish to leading order inNc. This allows us to derive, in the large-Nc

limit, the color-differential radiation cross sections by squaring the individual contributions

from the various color channels. More explicitly, the Ma a1 term reads

iMaa1 = −i g (tata1)eip
+x−

0

N
∑

n=1

θ(x+n −x+0 )

∫

dq

(2π)2
A(q)T a1

(n) e
−iq·xnJ(p+)

× eiω0x
+
n e

i M2

2p+
x+
0 2 ǫg ·

[

K0 −
(

1− e−iω1(x
+
n−x+

0 )
)

K1

]

. (3.26)

In this expression, the term proportional to K0 corresponds to a hard parton that emits a

gluon after scattering; it is the term M1(a) in figure 4. On the other hand, the three-gluon

– 13 –



J
H
E
P
0
7
(
2
0
1
2
)
1
4
4

vertex in the real emission amplitude M1(c) in figure 4 gives rise to a term proportional to

[ta, ta1 ], and the tata1-part of this commutator provides the contribution ∝ K1 in eq. (3.26).

The two K1 terms (with their different phase factors) arise from processes in which the

propagator of the hard projectile parton is on or off-shell, respectively. In close analogy,

one finds

iMa1a = i g (ta1ta)eip
+x−

0

N
∑

n=1

θ(x+n −x+0 )

∫

dq

(2π)2
A(q)T a1

(n) e
−iq·xnJ(p+)

× eiω0x
+
n e

i M2

2p+
x+
0 2 ǫg ·

[(

1−e−iω0(x
+
n−x+

0 )
)

K0 −
(

1−e−iω1(x
+
n−x+

0 )
)

K1

]

, (3.27)

where the term proportional to K0 corresponds to M1(b) in figure 4 and the term pro-

portional to K1 is the part of M1(c) proportional to ta1ta. Again, the phase factors are

different depending on whether the projectile from the hard event is on or off-shell. In the

color-differential amplitude (3.27), the phase factors are written in terms of the ‘transverse

energies’

ω0 ≡
k2
g + x2M2

2xg p+
, ω1 ≡

(kg − q)2 + x2M2

2xg p+
. (3.28)

In general, the inverse transverse energies 1/ω0, 1/ω1 act as formation times for medium-

induced gluon emission. The color-averaged result for medium-induced gluon radiation to

first order in opacity is known to depend only on 1/ω1 (we reproduce this result as a check

in eq. (3.32) below). For the color-differential case studied here, we observe that the result

depends on both formation times 1/ω0 and 1/ω1. In particular, after squaring the above

amplitudes and averaging over the longitudinal position x+n ∈
[

x+0 ;x
+
0 + L+

]

for a medium

of constant density, we find a vacuum-like contribution from the color-channel ‘aa1’ and a

medium-modified one from the channel ‘a1a’:

〈|Maa1
1 |2〉 ∼

〈

(K0 −K1)
2 +K2

1 + 2K1 ·(K0 −K1)
sin[ω1L

+]

ω1L+

〉

, (3.29)

〈|Ma1a
1 |2〉 ∼ 2

(

1− sin[ω0L
+]

ω0L+

)

K2
0 + 2

〈(

1− sin[ω1L
+]

ω1L+

)

K2
1

〉

−
〈

2

(

1− sin[ω0L
+]

ω0L+
− sin[ω1L

+]

ω1L+
+
sin[(ω1−ω0)L

+]

(ω1−ω0)L+

)

K0 ·K1

〉

. (3.30)

To first order in opacity, the calculation is completed by including the channel ‘a’ in which

no color is exchanged with the medium. We have 〈|Ma
1|2〉 = |M0|2 + 2Re

〈

Mcont
2 M∗

0

〉

,

where |M0|2 accounts for the vacuum branching and

2Re 〈M2M∗
0〉 ∼ −K2

0 − 2

(

1− sin[ω0L
+]

ω0L+

)

K2
0

−2

〈(

sin[ω0L
+]

ω0L+
− sin[(ω1 − ω0)L

+]

(ω1 − ω0)L+

)

K0 ·K1

〉

. (3.31)

The sum 〈|Maa1
1 |2〉+〈|Ma1a

1 |2〉+2Re
〈

Mcont
2 M∗

0

〉

combines to the color-averaged medium-

induced gluon radiation cross section

k+
dImed

dk+ dkg
= CR

αs

π2

L+

λ+
el

〈

(

(K0 −K1)
2 −K2

0 +K2
1

)

(

1− sin[ω1L
+]

ω1L+

)〉

. (3.32)
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This expression shows explicitly that the opacity expansion is an expansion in powers of

L+/λ+
el , where λ

+
el denotes the elastic mean free path of a gluon and R is the representation

of the projectile. Here we are considering a quark, hence CR=CF .

3.4 Dependence of color-differential N = 1 gluon radiation on formation

time(s)

In the color-averaged cross section (3.32), the phase factor

(

1− sin
(

ω−
1 L+

)

ω−
1 L+

)

=

{

0 for 1/ω−
1 ≫ L+ ,

1 for 1/ω−
1 ≪ L+ .

(3.33)

interpolates between the coherent and incoherent regimes. Thus, the color-inclusive medium-

induced spectrum in eq. (3.32) vanishes if the gluon formation time prior to its rescattering

1/ω−
1 is larger than the in-medium path length. This result matches the naive expectation

that the medium can modify only the radiation of those gluons that are fully formed within

its finite extension. Here, we discuss the different behavior of the various color channels:

vacuum-like (aa1), medium-modified (a1a) and not color-correlated with the medium (a).

They sum up to the inclusive result dI ≡ dIvac + dImed, where

k+
dIvac

dk+dkg
≡ k+

dIvac

dk+dkg

∣

∣

∣

∣

a

= CR
αs

π2
K2

0 (3.34)

and

k+
dImed

dk+dkg
≡ k+

dImed

dk+dkg

∣

∣

∣

∣

aa1

+ k+
dImed

dk+dkg

∣

∣

∣

∣

a1a

+ k+
dImed

dk+dkg

∣

∣

∣

∣

a

. (3.35)

For the color-differential contributions on the right hand side of this equation, the in-

medium path length L+ has to be compared with the two distinct formation times 1/ω0

and 1/ω1. To discuss this dependence, we focus on the four limiting cases in which either

one or both formation times are either significantly larger or significantly smaller than L+.

In order to display more transparently the physical meaning of the various terms we will

exploit the large-Nc identities CA=2CF for the color factors and λ+
q = 2λ+

g for the elastic

mean free paths.

1. Totally incoherent case (L+ ≫ 1/ωi, with i = 0, 1)

In the limit ωiL
+ → ∞, the color-averaged medium-induced gluon radiation

spectrum (3.32) is proportional to
〈

(K0 −K1)
2 −K2

0 +K2
1

〉

. This is the in-

coherent superposition of: the usual Gunion-Bertsch spectrum for gluon emis-

sion ∝
〈

(K0 −K1)
2
〉

; a negative contribution to the vacuum radiation spectrum,

∝ −
〈

K2
0

〉

, that corrects the vacuum term for the probability that the radiated gluon

interacts with the medium; and a vacuum-radiation spectrum that is shifted in trans-

verse momentum due to the rescattering of the radiated gluon in the medium ∝
〈

K2
1

〉

.

For the corresponding color differential contributions, we find from (3.29), (3.30)
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and (3.31)

k+
dImed

dk+dkg

∣

∣

∣

∣

aa1

∼
ωiL+→∞

CF

2

αs

π2

L+

λ+
g

〈

(K0 −K1)
2 +K2

1

〉

, (3.36a)

k+
dImed

dk+dkg

∣

∣

∣

∣

a1a

∼
ωiL+→∞

αs

π2

[

L+

λ+
g

(

CF

2

)

(〈

(K0−K1)
2
〉

+
〈

K2
1

〉)

+
L+

λ+
q
CFK

2
0

]

,

(3.36b)

k+
dImed

dk+dkg

∣

∣

∣

∣

a

∼
ωiL+→∞

CF

2

αs

π2

L+

λ+
g
(−3K2

0) . (3.36c)

After inspection of the color factors and of the mean-free-paths involved, the above

terms admit a transparent physical interpretation. Eq. (3.36a) is the sum of half of

the GB spectrum 〈(K0 − K1)
2〉 by an on-shell quark and half of the contribution

of reshuffled vacuum radiation 〈K2
1〉 by an off-shell quark. Eq. (3.36b), on top of

this, gets an additional contribution from the vacuum radiation K2
0 by an off-shell

quark which then suffers a further elastic scattering in the medium. In this limit, the

medium-modified color differential contribution ‘a1a’ is the largest. As a consequence,

the radiated gluon is decorrelated in color from the leading partonic fragment in

more than half of the medium-modified parton branchings. This case is depicted for

instance in figure 3.

2. Totally coherent case (1/ωi ≫ L+)

For very large gluon formation times, the gluon is produced far outside the medium.

At the level of the color-inclusive result the medium is not a source of an enhanced

rate of parton branching: the color-averaged medium-induced spectrum in eq. (3.32)

vanishes. However, with the probability that an elastic interaction occurs, the frag-

menting projectile is color connected to the medium (‘aa1’ channel) rather than to

the hard production process (‘a’ channel):

k+
dImed

dk+dkg

∣

∣

∣

∣

aa1

∼
ωiL+→0

L+

λ+
q
CF

αs

π2
K2

0 , (3.37a)

k+
dImed

dk+dkg

∣

∣

∣

∣

a1a

∼
ωiL+→0

0 , (3.37b)

k+
dImed

dk+dkg

∣

∣

∣

∣

a

∼
ωiL+→0

−L+

λ+
q
CF

αs

π2
K2

0 . (3.37c)

The rearrangement between the ‘aa1’ and ‘a’ channels reflects the fact that color is

exchanged between medium and projectile even if the color averaged spectrum (3.32)

remains unchanged, i.e. even if there is no overall enhanced probability of gluon

radiation induced by the medium. Notice, however, that in both channels the gluon

is color correlated with the highest-pT fragment.

3. 1/ω1 ≫ L+ ≫ 1/ω0

In this kinematic range, the color-inclusive medium-induced radiation vanishes. Re-

markably, however, the color connection amongst the most energetic fragments is
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still medium-modified and two-thirds of the gluons radiated due to medium effects

(and compensated by a corresponding depletion in the vacuum spectrum) are carried

by the ‘a1a’ contribution and are thus decorrelated in color from the most energetic

fragment

k+
dImed

dk+dkg

∣

∣

∣

∣

aa1

ω0L+→∞∼
ω1L+→0

L+

λ+
q
CF

αs

π2
K2

0 , (3.38a)

k+
dImed

dk+dkg

∣

∣

∣

∣

a1a

ω0L+→∞∼
ω1L+→0

2
L+

λ+
q
CF

αs

π2
K2

0 , (3.38b)

k+
dImed

dk+dkg

∣

∣

∣

∣

a

ω0L+→∞∼
ω1L+→0

−3
L+

λ+
q
CF

αs

π2
K2

0 . (3.38c)

The factor 2 difference between the ‘aa1’ and ‘a1a’ channels reflects the fact that

eq. (3.38a) gets contribution only from processes in which the propagator of the hard

quark is on-shell prior to scattering and radiation; for contributions to eq. (3.38b)

this propagator can be either on- or off-shell.

4. 1/ω0 ≫ L+ ≫ 1/ω1

Also in this case, the medium-modified color channel ‘a1a’ — in which the gluon

decorrelates in color from the leading parton — tends to be the most likely one for

parton splitting

k+
dImed

dk+dkg

∣

∣

∣

∣

aa1

ω0L+→0∼
ω1L+→∞

L+

λ+
g

CF

2

αs

π2

〈

(K0 −K1)
2 +K2

1

〉

, (3.39a)

k+
dImed

dk+dkg

∣

∣

∣

∣

a1a

ω0L+→0∼
ω1L+→∞

L+

λ+
g
CF

αs

π2
〈K2

1〉 , (3.39b)

k+
dImed

dk+dkg

∣

∣

∣

∣

a

ω0L+→0∼
ω1L+→∞

L+

λ+
g

CF

2

αs

π2

〈

−K2
0 − 2K0 ·K1

〉

. (3.39c)

As an aside, we note that there are kinematic arguments for why this limiting case

may be less relevant for a medium-modified parton shower2.

In summary, whenever medium-induced gluon radiation is sizable, the qualitatively novel

medium-modified color connection ‘a1a’ of the projectile with the medium arises in more

than half of the processes. Moreover, even in cases in which the color-inclusive induced

spectrum (3.32) is negligible, the presence of the medium can act as a source of color-

decorrelation between the radiated gluon and the leading parton.

2We recall that the gluon in the final state has transverse momentum kg and therefore a formation

time 1/ω0. The term 1/ω1 can thus be viewed as the formation time of a gluon that did not yet undergo

scattering with the medium. Since gluon emission is dominated by collinear branching, the initial gluon

transverse momentum kg − q will be small in most branching processes, and a further momentum transfer

from the medium is more likely to increase the gluon’s transverse momentum than to reduce it. So, on

qualitative grounds, the ordering |kg − q| < |kg| (and equivalently 1/ω0 < 1/ω1) is more likely to occur

than the opposite one.
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4 Higher orders in opacity: the N = 2 case

For a parton shower that develops in the vacuum, the two daughters of a q → qg or g → gg

branching process are always color connected. In contrast, in the N = 1 opacity expansion

carried out in the previous section, one finds that the interaction with the medium during

a branching process decoheres the daughters in exactly half of the cases for a projectile

parton produced in the distant past (x+0 = −∞), and in more than half of all cases whenever

there is a medium-induced gluon radiation from a parton produced in the medium (x+0 = 0

and 1/ω1 ≪ L+). Here, we discuss how these findings change once more than one gluon

exchange between the partonic projectile and the medium is taken into account.

In color-inclusive calculations, parton energy loss is largely determined by the average

squared transverse momentum per unit path-length irrespectively of whether the momen-

tum is transferred in one or several gluon exchanges. The fraction of radiated gluons that

are color decorrelated from the most energetic projectile fragment may, however, be ex-

pected to increase with the number of interactions with the medium. Here, we support this

expectation by performing a color-differential calculation of the N = 2 opacity contribution

to gluon radiation by a parton produced in the distant past.

As usual, the starting point is the expansion of the radiation amplitude in the number

of gluons exchanged with the medium:

Mrad = M0 +M1 +Mdir
2 +Mvirt

2 +Mdir
3 +Mvirt

3 + . . . . (4.1)

As was already the case at N = 1, the above amplitude involves ‘virtual’ contact terms

in which two gluons are exchanged between the projectile and a single scattering center in

the medium, without net exchange neither of color nor of transverse momentum. Up to

second order in opacity — when the projectile arrives on-shell from the far past, so that

M0 = 0 — the radiation spectrum receives contributions from

|Mrad|2 = |M1|2 + |Mdir
2 |2 + |Mvirt

2 |2 + 2ReMvirt
3 M∗

1 +O(L/λel)
3 . (4.2)

Here, a contribution to zeroth order in opacity is absent for a projectile coming from the

distant past, since a radiated gluon cannot be emitted on-shell without interaction with

the medium. For the same reason, interference terms 2ReMvirt
2 M∗

0 vanish in |Mrad|2.
However, the contribution |Mvirt

2 |2 does not vanish since a color-neutral two-gluon exchange

between the projectile and the medium can — in general — still transfer longitudinal

momentum, allowing the radiation of a gluon. Thus the amplitude for a color-neutral two-

gluon exchange with no transfer of momentum q with one scattering center, paired with a

corresponding term in the complex conjugate amplitude, leads to a finite contribution.

4.1 Direct contributions to N = 2

To second order in opacity, the contributions involving two finite momentum transfers are

depicted in figure 9. Here and in what follows, we represent effective non-local gluon emis-

sion vertices as dark blobs. They denote the combination of the three radiation amplitudes

in figure 6 and correspond to the Lipatov vertices in BFKL calculations. Their contribution
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Figure 9. The three gluon-radiation amplitudes involved in the N = 2 scattering case.

to the radiation of a gluon of momentum kg after momentum transfer q from the medium

can be expressed in terms of the currents

J(kg, q) ≡
kg

k2
g + x2gM

2
− kg−q

(kg − q)2 + x2gM
2
. (4.3)

We also introduce the notational shortcuts

J1 ≡ J(kg, q1), J2 ≡ J(kg, q2) and J12 ≡ J(kg − q2, q1). (4.4)

Employing the above currents it is possible to express the N = 2 direct contribution in the

convenient form suggested by figure 9

Mdir
2 = M[1] +M[2] +M[12], (4.5)

with

iM[1] ∼g ta2 [ta, ta1 ] 2 ǫg ·J1 e
i ω0x

+
1 (4.6a)

iM[2] ∼g [ta, ta2 ]ta1 2 ǫg ·J2 e
i ω0x

+
2 (4.6b)

iM[12] ∼g [[ta, ta2 ], ta1 ] 2 ǫg ·J12 e
i ω2x

+
1 ei (ω0−ω2)x

+
2 . (4.6c)

It follows from the color structure of the above amplitudes that the N = 2 direct

contribution can be organized into five distinct color channels

[a2 a a1] , [a2 a1 a] , [a a2 a1] , [a1 a a2] , [a1 a2 a] . (4.7)

An example is shown in figure 10. The vacuum-like contribution, in which the color flows in

the large Nc-limit from the projectile quark to the gluon, corresponds to the term [a a2 a1].

In the four other color channels, color flows from the leading quark projectile directly to

the medium without passing through the gluon, i.e., the gluon is color decohered from the

quark. To leading order in Nc, these five color channels do not interfere. From eqs. (4.6a)–

(4.6c) one readily obtains the radiation spectrum in the different color channel (interference

terms being suppressed by 1/N2
c factors). Transverse momentum kicks from the medium

are weighted by the corresponding elastic cross-section, employing the shorthand notation

〈〈. . .〉〉q1,q2
≡
∫

dq1

(

1

σel

dσel

dq1

)
∫

dq2

(

1

σel

dσel

dq2

)

. (4.8)
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t1 = p t′1

T
a1
(n)
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[aa2a1]

pi+q1

k−q2

Figure 10. An example of a Feynman diagram contributing to gluon radiation at N = 2 order in

opacity, with the corresponding color-flows associated to it.

Furthermore, we introduce the current |J−∞|2≡(2p+)2 describing the parton coming from

the far past. The vacuum-like contribution takes the form (after averaging over the longi-

tudinal location of the scattering centers)

〈|Maa2a1
2 |2〉

= 4g2CF

(

L+

λ+
q

)2

|J−∞|2
〈〈

1

2
|J2|2 +

1

2
|J12|2 + 2

1− cos(ω2L
+)

(ω2L+)2
J2 ·J12

〉〉

q1,q2

(4.9)

Amongst the four other color channels, three do not carry phase interference terms,

〈|Ma2a1a
2 |2〉 = 4g2CF

(

L+

λ+
q

)2

|J−∞|2
〈〈

1

2
|J1|2

〉〉

q1,q2

,

〈|Ma1aa2
2 |2〉 = 〈|Ma1a2a

2 |2〉 = 4g2CF

(

L+

λ+
q

)2

|J−∞|2
〈〈

1

2
|J12|2

〉〉

q1,q2

, (4.10)

while the fourth one has a slightly more complicated structure

〈|Ma2aa1
2 |2〉 = 4g2CF

(

L+

λ+
q

)2

|J−∞|2
〈〈

1

2
|J1|2 +

1

2
|J2|2 +

1

2
|J12|2 − 2

1− cos(ω0L
+)

(ω0L+)2
J1 ·J2

−2
1− cos(ω02L

+)

(ω02L+)2
J1 ·J12 + 2

1− cos(ω2L
+)

(ω2L+)2
J2 ·J12

〉〉

q1,q2

. (4.11)
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The sum of the above five terms yields the N = 2 direct contribution to the spectrum:

〈|Mdir
2 |2〉 = 4g2CF

(

L+

λ+
q

)2

|J−∞|2
〈〈

|J1|2 + |J2|2 + 2|J12|2 − 2
1− cos(ω0L

+)

(ω0L+)2
J1 ·J2

−2
1− cos(ω02L

+)

(ω02L+)2
J1 ·J12 + 4

1− cos(ω2L
+)

(ω2L+)2
J2 ·J12

〉〉

q1,q2

. (4.12)

From this and the corresponding color-differential expressions, one then checks easily that,

in the totally incoherent limit, the vacuum-like contribution

〈|Maa2a1
2 |2〉 ∼

ωiL+→∞

1

2

〈

|J2|2 + |J12|2
〉

(4.13)

is always more than a factor 2 smaller than the sum over all five color channels

〈|Mdir
2 |2〉 ∼

ωiL+→∞

〈

|J1|2 + |J2|2 + 2|J12|2
〉

. (4.14)

This is consistent with the naive expectation that a vacuum-like fragmentation pattern is

less likely to survive in higher orders in opacity.

4.2 Virtual contributions to N = 2

The N = 2 opacity calculation is completed by the computation of the relevant contact

terms. In the case at hand, a projectile arriving on-shell from the far past, these correspond

to the terms 〈|Mvirt
2 |2〉 and 2Re〈Mvirt

3 M∗
1〉 in eq. (4.2). From the color point of view they

contribute, respectively, to the ‘a’ and ‘aa1’/‘a1a’ channels:

〈|Mvirt
2 |2〉 ≡ 〈|Mvirt

2 |2〉a ,
2Re〈Mvirt

3 M∗
1〉 ≡ 2Re〈Mvirt

3 M∗
1〉aa1 + 2Re〈Mvirt

3 M∗
1〉a1a. (4.15)

The term 〈|Mvirt
2 |2〉a accounts for processes in which neither color nor transverse mo-

mentum is exchanged between projectile and medium, but where the longitudinal (‘-’ in

light-cone coordinates) momentum transferred by the medium is sufficient to open the pos-

sibility of gluon radiation for a quark initially on-shell. This is a novel contribution, absent

at N=1 opacity. On the other hand, the terms 2Re〈Mvirt
3 M∗

1〉aa1/a1a are virtual corrections

which combine with the direct amplitudes 〈|Maa1
1 |2〉 and 〈|Ma1a

1 |2〉, and that decrease the

weight of the corresponding color channels.

The calculation of 〈|Mvirt
2 |2〉a requires the evaluation of the same contact terms, shown

in figure 8, as in the N = 1 case for a quark produced at x+0 = 0. Here, however, only the

terms referring to a quark arriving on-shell are retained

〈|Mvirt
2 |2〉a = 4g2CF

(

L+

λ+
q

)2

|J−∞|2
〈〈

2
1− cos(ω0L

+)

(ω0L+)2
J1 ·J2

〉〉

q1,q2

. (4.16)

In the color inclusive spectrum, this contribution cancels the ω0-dependent terms in (4.12).

We further note that most ‘virtual’ corrections in the opacity expansion can be regarded
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Figure 11. An example of the contact diagrams contributing to Mvirt
3 .

as probability conserving terms that subtract yield from terms of lower order in opacity.

In contrast, the contribution (4.16) is always positive, and it opens a channel ‘a’ absent at

lower order in opacity.

The calculation of the term 2Re〈Mvirt
3 M∗

1〉 involves the evaluation of diagrams like

the one in figure 11. Details of the calculation are given in appendix B. One gets for the

two channels

2Re〈Mvirt
3 M∗

1〉aa1 =

4g2CF

(

L+

λ+
q

)2

|J−∞|2
〈〈

−3

2
|J1|2 −

1

2
|J2|2 + 2

1− cos(ω0L
+)

(ω0L+)2
J1 ·J2

+2
1− cos(ω02L

+)

(ω02L+)2
J1 ·J12 + 2

1− cos(ω2L
+)

(ω2L+)2
J2 ·J12

〉〉

q1,q2

, (4.17)

and

2Re〈Mvirt
3 M∗

1〉a1a = 4g2CF

(

L+

λ+
q

)2

|J−∞|2

×
〈〈

−3

2
|J1|2 −

1

2
|J2|2 − 2

1− cos(ω0L
+)

(ω0L+)2
J1 ·J2 + 2

1− cos(ω2L
+)

(ω2L+)2
J2 ·J12

〉〉

q1,q2

.

(4.18)

4.3 Gluon radiation up to order N = 2 in opacity

We can now write the medium-induced radiation spectrum up to order N = 2 in opacity.

It can be written as dI = dIN=1+dIN=2, where dIN=1 is the lowest-order (N = 1 opacity)

result:

k+
dIN=1

dk+dk
= CA

αs

π2

(

L+

λ+
q

)

〈

|J1|2
〉

q1
, (4.19)

while dIN=2 arises from the sum 〈|Mdir
2 |2〉+ 〈|Mvirt

2 |2〉+ 2Re〈Mvirt
3 M∗

1〉. In the large-Nc

limit when CA = 2CF for the color charges and λq = 2λg for the mean free paths, one finds

k+
dIN=2

dk+dk
= CA

αs

π2

(

L+

λ+
q

)2〈〈

|J12|2 − |J1|2 + 2
1− cos(ω2L

+)

(ω2L+)2
2J2 ·J12

〉〉

q1,q2

, (4.20)

which coincides with the well known result quoted for instance in ref. [16].3

3Note that in [16] Minkowski coordinates are employed and the mean-free-path λq is replaced by 2λg.
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While the above color-inclusive result depends on a single formation time 1/ω2, the

color-differential contributions to second order in opacity depend already on three different

formation times and have a somewhat more complicated structure. Let us now express the

radiation spectrum in a color-differential way.

The channels ‘aa1’ and ‘a1a’, already present at order N = 1, receive in the N = 2

calculation a correction from the virtual terms

dIaa1 = dIN=1
aa1 + dIN=2

aa1 (4.21a)

dIa1a = dIN=1
a1a + dIN=2

a1a . (4.21b)

In the above dIN=1
aa1 = dIN=1

a1a = (1/2)dIN=1, while the N = 2 corrections can be obtained

from eqs. (4.17) and (4.18) and read:

k+
dIN=2

dk+dk

∣

∣

∣

∣

aa1

= CF
αs

π2

(

L+

λ+
q

)2〈〈

−3

2
|J1|2 −

1

2
|J2|2 + 2

1− cos(ω0L
+)

(ω0L+)2
J1 ·J2

+2
1− cos(ω02L

+)

(ω02L+)2
J1 ·J12 + 2

1− cos(ω2L
+)

(ω2L+)2
J2 ·J12

〉〉

q1,q2

, (4.22)

k+
dIN=2

dk+dk

∣

∣

∣

∣

a1a

= CF
αs

π2

(

L+

λ+
q

)2〈〈

−3

2
|J1|2 −

1

2
|J2|2 − 2

1− cos(ω0L
+)

(ω0L+)2
J1 ·J2

+2
1− cos(ω2L

+)

(ω2L+)2
J2 ·J12

〉〉

q1,q2

. (4.23)

Furthermore the N = 2 calculation open new channels absent at lower order in opacity.

The spectrum in the ‘a’-channel, involving no color exchange, follows from eq. (4.16):

k+
dIN=2

dk+dk

∣

∣

∣

∣

a

= CF
αs

π2

(

L+

λ+
q

)2〈〈

2
1− cos(ω0L

+)

(ω0L+)2
J1 ·J2

〉〉

q1,q2

. (4.24)

Concerning the channels arising from Mdir
2 one has, for instance, the channel with vacuum-

like color connection of the leading fragment with the radiated gluon,

k+
dIN=2

dk+dk

∣

∣

∣

∣

aa2a1

= CF
αs

π2

(

L+

λ+
q

)2〈〈
1

2
|J2|2 +

1

2
|J12|2 + 2

1− cos(ω2L
+)

(ω2L+)2
J2 ·J12

〉〉

q1,q2

.

(4.25)

The spectrum in the other channels can be easily obtained from the corresponding squared

amplitudes quoted in section 4.1.

Here, we end by considering the totally incoherent limit in which L+ is much larger

than all formation times in the problem. This is the dominant phase space region for

gluon radiation in the sense that gluon radiation is not suppressed by destructive quantum

interference. One checks easily that, in this totally incoherent limit, the totally virtual term

〈|Mvirt
2 |2〉 (the one contributing to the ‘a’-channel) vanishes. The vacuum-like ‘aa1’ and

medium-modified ‘a1a’ probability conserving factors 2Re〈Mvirt
3 M∗

1〉 have equal negative

weight ∝ −3|J1|2/2−|J2|2/2. However, for the terms with two finite transverse momentum

transfers from the medium, 〈|Mdir
2 |2〉, the contributions with medium-modified color-flow
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(the ones in which the gluon is color-decohered) have a weight ∝
(

2|J1|2 + |J2|2 + 3|J12|2
)

that is larger than the vacuum-like one ∝
(

|J2|2 + |J12|2
)

. This illustrates with an explicit

calculation the general expectation that the weight of vacuum-like contributions to the

total radiation spectrum decreases as higher orders in opacity are accounted for.

4.4 General features of a color-differential analysis of medium-induced gluon

radiation

We now summarize what we learned from the technical analysis performed in the previous

sections, in which we calculated medium-induced gluon radiation in a spatially extended

QCD medium within an opacity expansion. The color-inclusive result is consistent with

previously known expressions. In addition, our calculation provides for the first time color-

differential information about medium-induced gluon radiation. We distinguish in partic-

ular vacuum-like contributions (in which the leading final state parton is color correlated

with the radiated gluon) from medium-modified contributions (in which the radiated gluon

is decohered in color from the projectile).4 Up to 2nd order in opacity, we found three

vacuum-like contributions

[a] , [a a1] , [a a2 a1] . (4.26)

Here, the notation [a . . .] indicates contributions to the gluon radiation amplitude in which

the SU(Nc) generators carrying open indices ai appear in the order specified in the brackets.

In the large-Nc limit, interference terms between different contributions to the amplitude

vanish, and the notation [a . . .] provides an efficient labeling of the contributions to the

gluon radiation cross section.

The configuration [a] arises for processes in which the final q-g pair is in the same

(total) color configuration as the incoming quark. For a quark produced inside the medium,

this includes the entire 0-th order opacity contribution, as well as a negative probability

conserving term to order N = 1. For a quark produced in the distant past, energy-

momentum conservation ensures that the contribution [a] is absent to orders N = 0 and

N = 1 in opacity, but it is found to contribute to order N = 2 with positive weight.

The other vacuum-like color configurations [a a1] , [a a2 a1], and more generally config-

urations of the form [a an an−1 . . . a1], arise first to n-th order in opacity as real terms with

n non-vanishing momentum and color exchanges between medium and projectile parton.

Higher orders in opacity will then provide probability-conserving corrections to the same

color configuration. Such corrections contain virtual terms, as exemplified by the N = 2

opacity contribution to [a a1].

In general, to each order in opacity, only one vacuum-like color configuration

[a an an−1 . . . a1] opens up anew. However, with increasing order in opacity, more and

more medium-modified color configurations can arise. For instance, up to second order in

opacity, we find the terms

[a1 a] , [a2 a a1] , [a2 a1 a] , [a1 a a2] , [a1 a2 a] . (4.27)

4More precisely, we call the large-Nc limit of a radiation-amplitude vacuum-like if and exactly if the quark

line of the leading final state quark (or one of the two quark and anti-quark lines of the most energetic final

state gluon) connect to the radiated gluon without passing through components of the medium.
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The strong increase in the number of medium-modified color configurations with increasing

order in opacity, and the corresponding decreasing weight of vacuum-like contributions (as

seen in the explicit N = 2 calculation) both support the physically intuitive idea that with

increasing density of the medium it becomes easier for a radiated gluon to decohere in

color from its partonic sister fragments. Our calculations show that the contribution of

color-decohered gluons to the medium-induced radiation always exceeds 50 % whenever

the latter is sizable, and it may well be much larger than 50 %.

5 Hadronizing parton showers with medium-modified color flow

Since QCD conserves color, a dynamically consistent hadronization model must respect

color flow in interfacing the fragments of perturbative parton showers with the hadronic

final states. Thus, even if hadronization occurs time-delayed and outside the medium, it

can be affected by the modification of the color connections introduced by the medium.

The Lund string-fragmentation model is a prime example of a phenomenologically suc-

cessful hadronization model that respects color flow. It is very well documented in the

literature [18, 21]. Hadronization is modeled by decomposing each parton shower into a

set of color singlet ‘strings’. These strings stretch between q and q̄ endpoints and rep-

resent color-connected gluons as kinks. They are then decayed into hadrons through the

excitation of qq̄ pairs from the vacuum. In section 2 we already discussed some exam-

ples of interfacing the final stage of a branching process with Lund strings. Since the

medium-modified parton branchings studied in sections 3 and 4 define color flow unam-

biguously, the above string-fragmentation routine can be applied without additional model

assumptions. In this section, we explore how the distribution of hadronic fragments can

be affected by medium-modifications of color flow. To this end, we interface the possible

color-configurations arising from the medium-induced branching of high-energy partons in

the plasma with the Lund hadronization model. Numerical results were obtained with the

string-fragmentation routine implemented in Pythia 6.4 [18]. The strings to be decayed

were built using the routines PY1ENT (to add a given parton to the event) and PYJOIN

(to join the partons provided by the user into a string, according to the proper order). The

aim of the following analysis is to illustrate, for specific examples, how the distribution of

hadronic fragments can be affected by a medium-modified color flow.

We start by considering figure 12. To first order in opacity, medium-induced gluon

radiation of a quark projectile exhibits two different color flows. In the channel labeled

as Final State Radiation the emitted gluon will be part of the same Lund string as the

leading quark. In contrast, in the case of Initial State Radiation (right panel of figure 12),

the radiated gluon is color decohered from the projectile fragment; this means that it is

instead linked through an independent string to a low-pT particle in the medium. For the

following, the Lund strings in figure 12 are defined in terms of the 4-momenta of their end-

points and kinks. For simplicity both the leading quark fragment and the radiated gluon

are assumed to be emitted at mid-rapidity (η = 0, i.e. θ = π/2) and at relative azimuthal

angle φ. The other endpoint of the string will then be attached either to a particle from the

medium or from the beam remnant: in both cases it will sit at low-pT . Medium particles
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Figure 12. The N = 1 opacity correction to the fragmentation of a high-pT quark, interfaced with

the Lund-string hadronization routine. In the case of final state radiation (FSR, left hand side) the

radiated gluon remains color connected with the other daughter of the branching and, if sufficiently

collinear, can contribute to the energy of the leading hadron. For initial state radiation (ISR, right

hand side), the gluon results color decohered from the leading projectile fragment, independently

on the emission angle; an independent Lund string is associated to it, whose decay will contribute

to an enhanced multiplicity of soft particles.

are taken with a typical thermal energy ∼ 3T , with random event-by-event momentum

orientation. For the temperature we take the value T = 200MeV.5 For the antiquark from

the beam remnant, we choose a large momentum along the beam direction (E = 1TeV and

pT = 0). The only dependence on E resides in the extension of the plateau in the rapidity

distribution of (very soft) hadrons from the decay of the subleading string.

Figure 13 shows examples of the distribution of hadronic fragments of the Lund strings

depicted in figure 12. These results were obtained for a typical partonic configuration with

a quark at high transverse momentum pT and a radiated gluon at much smaller transverse

momentum (as an illustration we chose here and in the following kT = 0.1 pT ). In the

left panel of figure 13 we display, for the two different color channels, the fragmentation

pattern of a hard quark branching in the medium. The FSR case (red curve) corresponds

to a vacuum-like color flow: in this case there is hadronic yield in a transverse momentum

range that exceeds the pT of the leading quark. In the Lund model, this accounts for

the fact that QCD is a finite resolution theory in which a perturbatively radiated gluon

does not automatically increase the hadronic multiplicity by order unity or more: it is not

necessarily ‘lost’ but, remaining color-connected with the other daughter of the branching,

may still contribute to the formation of the leading hadron. In contrast, the ISR case

(green curve) clearly shows that medium modification of color connections between the

radiated gluon and the projectile fragment results in a softening of the hadron distribution:

all hadronic yield above pT is suppressed and an additional contribution arises at soft

5The results were found to have a negligible dependence on the temperature. This is consistent with the

idea that the precise position of the soft endpoint of a string is unimportant for the hadronization of hard

fragments.
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Figure 13. The pT and η distributions of the hadrons from the fragmentation of the Lund strings

shown in figure 12. Both the quark and the gluon are emitted at midrapidity at relative angle

φ = 0.1. Left panel: fragmentation pattern in the FSR (in red) and ISR (in green) color channels.

Right panel: rapidity distribution of the hadrons in the ISR channel. The sharpest peak around

to η = 0 (continuous line) comes from the fragmentation of the leading string. The pattern “broad

peak + plateau” (dashed line) arises from the fragmentation of the subleading string, connected

to the beam remnant (hence the long plateau). Also shown (dot-dashed line) is the case in which

both endpoints of the subleading string are attached to a medium particle.

momenta below kT . The reason is that, for the ISR contribution, the color-decohered

gluon and quark belong to different strings and thus cannot contribute to the same leading

hadronic fragment. Therefore, hadronic multiplicity increases by construction with each

color-decohered gluon by order unity or more, and the additional multiplicity is found in

soft fragments of transverse momentum lower than kT , which is much smaller than pT .

These differences in the color flow of the ISR and FSR contribution have consequences

for the distribution of hadronic fragments. In particular, the fragmentation of the Lund

string of a vacuum-like (FSR) contribution results mainly in semi-hard and hard hadrons.

For instance, fragmentation of the FSR string of total energy ∼ 55GeV in figure 13 yields

on average 〈Nh〉 = 5.4 hadrons, of which 3.9 carry pT > 2GeV transverse momentum.

Since the multiplicity of Lund strings grows only mildly with the total length and with

the number of small kinks, the string of the ISR contribution that contains the leading

quark fragment will decay into almost as many hadrons (〈Nh〉 = 5.2 for the case shown

in in figure 13). However, these hadrons carry a smaller total transverse momentum, the

remaining fraction kT / (kT + pT ) being carried by the fragments of the subleading string.

The latter stretches over a short distance in transverse momentum, but it can stretch over

a long distance in rapidity, and hence it can yield high multiplicity. For instance, for one of

the cases shown in figure 13, the string stretches from a medium component around η = 0 to

a beam remnant at projectile rapidity and thus distributes 〈Nh〉med−g−beam
sublead = 12.7 hadrons

over approximately 10 units in rapidity. Alternatively, it is conceivable that due to further

interactions between the medium and the radiated gluon, both ends of the subleading

string connect to soft components close to mid-rapidity. In this case, the subleading string
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Figure 14. The ratio of 6-th moments of the ISR and FSR contributions to the fragmentation

functions of partonic configurations shown in figure 12. Here, prior to hadronization the leading

quark has transverse momentum pT , and the radiated gluon carries a scaled transverse momentum

kg = 0.1 pT and is emitted at φ = 0.1.

produces a much smaller number of hadrons (〈Nh〉med−g−med
sublead = 3.7 for the case in figure 13);

the hadronic distribution close to the rapidity η = 0 of the jet, however, changes only mildly.

Recent measurements by the CMS collaboration indicate that the medium-modified

fragmentation of jets in heavy ion collisions at the LHC is accompanied by a significant

increase in soft hadronic multiplicity6 that appears outside typical jet cones at large an-

gle with respect to the jet axis [4], while the hard part of the jet fragmentation function

is consistent with that of a vacuum jet of lower transverse energy [24]. Here, we note

that medium-modified color decoherence is a natural candidate mechanism for two of these

qualitative features. Namely, the leading string of the ISR contribution coincides by con-

struction with that of a vacuum quark jet of lower transverse energy (pT , rather than

pT + kT ). Moreover, medium-induced color decoherence leads naturally to distributing

the transverse energy kT amongst very soft components. It is less clear, however, whether

this additional soft multiplicity is distributed naturally over large angles outside the jet

cone. Our study indicates that the color decoherence associated to the N = 1 opacity

calculation is not enough to achieve such an angular broadening and a larger amount of

rescattering at the partonic level (that can be only achieved going to higher orders in opac-

ity) is mandatory. We caution that the numerical studies presented here focused entirely

on the effects of color decoherence while a phenomenologically satisfactory description of

jet quenching requires of course to interface these effects with the medium-modification

of kinematic distributions. Consistent with previous discussions we therefore expect that

the broadening of soft components is mainly due to kinematic effects (see refs. [25–28] for

models consistent with this idea).

We finally comment on the potential relevance of our findings for single-hadron spec-

tra which are particularly sensitive to the modifications occurring to the hard tail of

6An increase in soft hadronic multiplicity is also seen in hadron- and photon-triggered jet-like distribu-

tions at RHIC. For recent preliminary data, see e.g. refs. [22, 23].
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Figure 15. The same as figure 13, but for two choices of quark energy, and for a varying azimuthal

angle φ of the radiated gluon. As the relative angle increases, the fragmentation function gets softer.

the fragmentation function. It is customary to characterize this effect by considering a

steeply-falling parton spectrum 1/pnT that if convoluted with a Fragmentation Function

(FF) yields dσhadron ∼ 〈xn−1〉/pnT . This shows that single hadron spectra are mainly sen-

sitive to a higher ((n − 1)th) moment of the FF. In figure 14, we display the ratio of

the 6-th moments for different color channels in a specific kinematic configuration of a

parton shower. This figure illustrates that for an identical kinematic partonic configura-

tion (i.e., for the same amount of energy loss at the partonic level), the modification of

the color connections can introduce an additional significant source of suppression of the

hadronic spectrum. Quantitatively, in the case displayed in figure 14, one finds for in-

stance 〈x6〉ISR = 0.052 and 〈x6〉FSR = 0.078 for the ISR and FSR channels respectively.

In summary: since medium-induced color decoherence of radiated gluons depletes natu-

rally the high-pT tail of fragmentation functions, it can contribute to reducing the nuclear

modification factor RAA. A similar observation was made in a recent study [19], in which

parton splittings with medium-modified color flow were interfaced with a cluster hadroniza-

tion model. Also in that case the suppression showed a weak dependence on transverse

momenta and persisted at transverse momenta exceeding 100GeV. Figure 14 supports

the picture that medium-induced color decoherence can be a relevant factor for under-

standing the value and pT -dependence of the nuclear modification factor at high transverse

momentum.

So far we have illustrated the consequences of medium-modified color-flow for specific

partonic configurations. We discuss now how these effects vary with the partonic dynamics.

In particular, we have demonstrated so far that medium-modified color flow can decohere a

radiated gluon efficiently from its sister in a parton branching. However, the less collinear

the gluon is emitted, the more rapidly will it decohere due to kinematic effects alone. We

therefore expect that the effects of medium-induced color flow will be less relevant for

large angle emissions. This is supported by the angular dependence of the effect shown

in figure 15. We observe, however, that for a very broad range of opening angles in the

laboratory frame, the effects of medium-induced color flow remains clearly visible e.g. in
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a large-pT part of the fragmentation function that extends beyond the total pT carried by

the leading parton.

Elementary formation time arguments suggest [29] that hadronization can occur time-

delayed outside the medium, and that the earliest parton branchings in a shower can be

medium-modified since they occur inside the medium. However, these earliest branch-

ings may be followed by subsequent partonic branchings outside the medium prior to

hadronization. The question arises whether the features observed in figure 13 and 14 are

robust against inclusion of such subsequent parton branchings. The structure of typical

parton branching histories indicates that inclusion of a single additional splitting on top

of the ISR and FSR contributions of figure 12 provides already significant insight into

the question of how final state branchings may alter the effects of medium-induced color

decoherence on hadronization7. As shown in figure 16, inclusion of another parton split-

ting adds an additional kink to the leading string, but it does not change the fact that

the color-decohered gluon of the ISR configuration hadronizes in a separate, subleading

string, while in the FSR contribution both gluons are part of the leading string. As a

consequence, if both gluons of the FSR contribution are produced sufficiently collinear,

they can contribute to the production of the leading hadron, and the corresponding frag-

mentation function in figure 17 extends up to the transverse momenta that correspond to

the sum of the transverse momentum of the three projectile partons in the final state. In

contrast, the color-decohered gluon of the ISR contribution is lost for the formation of the

leading hadron. In this way, figure 17 clearly illustrates that additional parton branching

at late times does not wash out the effects of medium-induced color decoherence. More

precisely, medium-induced color decoherence removes efficiently a fraction of a jet’s energy

from the high-pT part of the fragmentation function by hadronizing it independently in soft

fragments. The leading string, however, irrespective of the number of gluons (i.e. kinks)

radiated outside the medium that it involves, appears to correspond at sufficiently high

pT to a vacuum fragmentation pattern of a jet of lower (ISR gluons are decohered) total

transverse energy. We emphasize that this observation depends mainly on two generic

features, namely that color-decohered gluons correspond to different strings and that ad-

ditional branchings at late times correspond to (typically small) kinks on the same string

and thus contribute to the distribution of leading fragments.

The effects we discussed in the present section arise from interfacing partonic evolu-

tion with the hadronic final state. They are due to the modifications of color connections

occurring in the partonic evolution in the presence of a medium. More precisely, a dynam-

ically consistent hadronization model always relates hadrons to color singlet fragments of

the (vacuum/in-medium) parton shower; we therefore expect on general grounds that the

medium-modifications of color flow (a generic feature of parton energy loss) will lead to ob-

servable consequences in hadronic distributions. In the present section, we supported this

7As a consequence of the steeply falling pT dependence of spectra, by triggering on the pT of a parton at

the end of a shower evolution one typically selects parton showers that have suffered a very limited number

of branching. For instance, for a sample of quarks at LHC energy generated by Pythia in a ‘hard event’

+ ‘final state shower’ process, one finds for a trigger pT ∼ 50GeV of the final quark an average number of

daughter gluons of order ∼ 2.5. This number increases only very weakly with ptrigT .
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Figure 16. The color flow associated with medium-induced FSR (left hand side) and ISR (right

hand side) in the N = 1 opacity expansion, supplemented with an additional second gluon emission

at late time.

expectation by studies within the LUND hadronization model. The question arises whether

similar consequences will persist in other schemes. A full model study of this question lies

beyond the scope of the present paper. We note, however, that we had investigated already

in a previous work [19] how the same effects arise in a cluster hadronization model, as the

one implemented in the MC event generator HERWIG. In such a scheme the parton shower

is evolved perturbatively down to a hadronic scale at which its color singlet components

(quark-antiquark ‘clusters’, with all gluons forced to split) are identified. Clusters C of low

invariant mass (MC < Mcr = 4GeV) are then decayed directly into pairs of hadrons, while

heavier clusters are decayed first into pairs of daughter sub-clusters, until their invariant

mass satisfies the condition for a two-body decay into hadrons. On the left-hand side of

figures 1, 2 and 3, we have highlighted in thick colored lines the most energetic (leading)

clusters identified in such a scheme. The leading cluster associated to the FSR contribution

of figure 2 shows the localization in the parton shower that is typical for elementary collision

(see figure 1). On the contrary the leading cluster in the ISR case, displayed in figure 3,

involves a component of the medium. A crucial parametric observation of ref. [19] is that

this last kind of clusters carries an invariant mass: M ISR
C

∼
√
ET (with E the energy of the

hard ‘projectile’) that is very large compared to the typical mass ∼ 1GeV of vacuum-like

clusters. This parametrically larger invariant mass induced by the medium-modified color

flow implies that these clusters will typically fragment into daughter sub-clusters of smaller

invariant mass before their final decay into hadrons. This additional decay step — rare in

vacuum-like configurations — induces a significant softening of the hadronic distributions.8

In summary, we observe that the additional softening of hadronic distributions due to the

8That additional color exchanges suffered by final state partons may lead to color-singlet clusters of

very large invariant mass and how this can affect hadron multiplicities is something explored also in the

contest of the study of the interaction of hard partons with the Underlying Event in p-p collisions, see for

instance [37].
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Figure 17. The pT -distribution of hadrons from the fragmentation of the Lund strings interfaced

with the two color-flows involved at N = 1 order in opacity supplemented by the subsequent

showering shown in figure 16. The two parton branchings were at azimuthal angle φ = 0.2 and

φ = 0.1, respectively. The figure illustrates that the effects of medium-induced color decoherence

are not washed out by subsequent showering.

medium-modified color flow is a feature that is characteristic of at least two quite different

hadronization models.

6 Conclusions

In the absence of medium effects, the only color correlation between a final state parton

shower and the rest of a hadronic collision is the one between the color of the primary

‘parent’ parton and some color-compensating beam remnant. Jet-medium interactions

change this feature generically and characteristically. To date, very few studies [14, 15,

30–35] have addressed aspects of the role played by medium modifications of color flow.

Most studies focus solely on medium-induced changes of the multiplicity and kinematic

distribution of partons in the shower. In the present work, we have pointed out that jet-

medium interactions give rise to qualitatively novel color correlations in which components

of the parton shower are color-decohered from their sister partons in branching processes.

Let us summarize our findings in a formulation that is slightly different from the one

adopted so far. Physically, hadronization of parton showers amounts to a procedure that

specifies the overlap between the color singlet components in the shower and the physical

Hilbert space of all hadronic wave functions corresponding to experimentally accessible

states. As is generally known and as we have illustrated for the Lund hadronization model

in figure 13, this mapping can result in hadronic fragments that are more energetic than

the most energetic partonic component that is hadronized. This is so, since a radiated

partonic component — as long as not decohered completely from its sisters in the branch-

ing process — can display an overlap with the same hadronic one-particle state as its

sisters. In this sense, the energy radiated perturbatively in gluons is not automatically an

energy lost for the formation of a hadron; it is only ‘lost’ if the gluon is decohered. In

the vacuum, sister partons typically remain color connected and their decoherence there-
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fore arises only kinematically, as a consequence of their relative transverse separation. To

date, studies of parton energy loss have mainly focused on modifications of this kinematic

decoherence. Here, we have demonstrated that in comparison to purely kinematic effects,

medium-modified color flow is a highly efficient decoherence mechanism and can thus con-

tribute significantly to softening hadronic distributions (see section 5). As emphasized in

section 2 this is a qualitatively novel and generic property of parton energy loss mecha-

nisms that arises from the gluon exchanges between the parton shower and the medium,

independently of model-specific dynamical details. It will generically increase the number

of decohered color singlets in the parton shower. The relative rate of partonic configu-

rations with an increased number of color-decohered components is large: in the explicit

color-differential calculations presented in sections 3 and 4, it always exceeds 50 % of the

entire medium-modified gluon radiation.

Remarkably, we found in section 5 that the medium-induced color decoherence of glu-

ons from the parton shower leads naturally to their hadronization into soft components

while the most energetic components will hadronize like vacuum structures of reduced

transverse energy. This appears to be characteristically different from the typically studied

kinematically induced medium modifications where one expects generically that the en-

hancement of soft jet fragments is accompanied by medium-modifications of the shape of

the fragmentation function at all momentum scales. On the other hand, it is qualitatively

in line with CMS data on dijet asymmetries. In particular, CMS data show jet fragmen-

tation functions that are at high transverse momentum consistent with the fragmentation

of vacuum jets of degraded total transverse energy ET − ∆E. Moreover, the missing jet

energy ∆E is recovered in very soft hadrons. Both these features arise naturally from the

medium-modified color decoherence of jet fragments studied here. We caution, however,

that the experimentally observed soft components are distributed over a wide region in

∆η ×∆φ. While we have seen some broadening of the distribution of soft fragments (see

figure 13 displaying the hadron η-distribution), we did not identify a generic argument

that could account for such an observed wide distributions in the presence of only N = 1

gluon exchange with the medium. It remains to be clarified for instance to what extent

soft fragments are broadened further if subsequent medium-induced gluon branchings or

higher orders in opacity are taken into account. More generally, the present work was

limited to showing that medium-induced color decoherence is a non-negotiable aspect of

parton energy loss mechanisms that can lead to qualitatively novel and numerically sig-

nificant features in jet quenching calculations. The next step is now to incorporate the

generic features of medium-induced color decoherence established here in a more complete

dynamical modeling of jet quenching.
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A Gluon projectile: color-differential spectrum

Here we provide further details on the color-differential N = 1 opacity calculation for the

case of a projectile gluon impacting from the distant past. This extends the discussion of

the diagrams of figure 6 in section 3.1 to the case of a medium-modified splitting

g(d) → g(b) g(a) . (A.1)

As indicated above, the incoming gluon has color d. The outgoing gluons carry momentum

fractions xg and 1− xg with xg ≪ 1− xg. The color b is attributed to the outgoing harder

gluon that carries momentum fraction 1−xg and to which we refer as outgoing ‘projectile’

gluon; the softer outgoing gluon carries color a and the gluon exchanged with the medium

has color index a1. The polarization vectors for the incoming and outgoing ‘projectile’

gluon, as well as for the radiated gluon are

ǫi ≡ [0, 0, ǫi], ǫf ≡
[

0,
ǫf ·(q−kg)

(1−xg)p+
, ǫf

]

, ǫg ≡
[

0,
ǫg ·kg

xgp+
, ǫg

]

, (A.2)

respectively. For a high energy gluon, the interaction with the medium is described by the

eikonal vertex gfabcgµρ(p + p′)ν . The amplitude M(a) of a gluon that first interacts with

the medium prior to gluon radiation reads then

iM(a) =
N
∑

n=1

gfabcgνρ(−2pf − kg)
µ (−i)

(pf + kg)2
×

gf ca1dgνρ(2pi + q)σǫg,µǫf,νǫi,ηAσ(q)e
iq·xnT a1

(n)

=

N
∑

n=1

(−i) g2
(

T a
AT

a1
A

)

bd
(ǫi ·ǫf )

(

pf ·ǫg
pf ·kg

)

2p+A(q)eiq·xnT a1
(n). (A.3)

In close analogy, we find

iM(b) =
N
∑

n=1

−(−i) g2
(

T a1
A T a

A

)

bd
(ǫi ·ǫf ) (1−xg)

(

pi ·ǫg
pi ·kg

)

2p+A(q)eiq·xnT a1
(n) , (A.4)

and

iM(c) =
N
∑

n=1

(−i)g2faa1cf bcd(ǫi ·ǫf )
−1

(kg−q)2
2(1−xg) [ǫg ·(kg−q)]2p+A(q)eiq·xnT a1

(n) . (A.5)

These expressions are given in terms of the generators of the adjoint representation,

(T a
A)bc = ifabc. For a discussion of color flow in the large-Nc limit it is useful to express

them in terms of traces over products of generators ta in the fundamental representation.

For instance, starting from the normalization Tr(tatb)=1/2δab and ifabc = 2Tr
([

ta, tb
]

tc
)

,

one finds

(T aT a1)bd = 2Tr
(

[tb, ta][ta1 , td]
)

. (A.6)

As explained in section 3.2, this allows one to separate the entire gluon radiation amplitude

into six different color channels. The corresponding diagrammatic contributions are shown
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in Fig 5 and listed in (3.16). Here, we provide their explicit expressions. Representing the

incoming gluon projectile in the large-Nc limit by a quark and an anti-quark leg, we label

these contributions as follows:

• FSR(q): final state radiation of the quark leg (configuration baa1d)

iMbaa1d =
N
∑

n=1

(−i)2Tr
(

tbtata1td
)

(

ǫg ·(kg−xgq)

(kg−xgq)2
− ǫg ·(kg−q)

(kg−q)2

)

2(1−xg)(ǫi·ǫf )Ma1,(n)
el

(A.7)

• FSR(q̄): final state radiation of the anti-quark leg (configuration bda1a)

iMbda1a =

N
∑

n=1

(−i) 2Tr
(

tatbtdta1
)

(

ǫg ·(kg−xgq)

(kg−xgq)2
− ǫg ·(kg−q)

(kg−q)2

)

2(1−xg)(ǫi·ǫf )Ma1,(n)
el

(A.8)

• ISR(q): initial state radiation of the quark leg (configuration ba1ad)

iMba1ad =
N
∑

n=1

−(−i) 2Tr
(

tbta1tatd
)

(

ǫg ·kg

k2
g

− ǫg ·(kg−q)

(kg−q)2

)

2(1−xg)(ǫi ·ǫf )Ma1,(n)
el

(A.9)

• ISR(q̄): initial state radiation of the anti-quark leg (configuration bdaa1)

iMbdaa1 =
N
∑

n=1

−(−i) 2Tr
(

ta1tbtdta
)

(

ǫg ·kg

k2
g

− ǫg ·(kg−q)

(kg−q)2

)

2(1−xg)(ǫi ·ǫf )Ma1,(n)
el

(A.10)

• RqSq̄: radiation of the quark leg but medium interaction on anti-quark leg, configu-

ration (bada1)

iMbada1 =
N
∑

n=1

−(−i) 2Tr
(

tbtatdta1
)

(

ǫg ·(kg−xgq)

(kg−xgq)2
− ǫg ·kg

k2
g

)

2(1−xg)(ǫi·ǫf )Ma1,(n)
el

(A.11)

• Rq̄Sq: radiation of the anti-quark leg but medium interaction on quark leg (configu-

ration ba1da)

iMba1da =
N
∑

n=1

−(−i) 2Tr
(

tatbta1td
)

(

ǫg ·(kg−xgq)

(kg−xgq)2
− ǫg ·kg

k2
g

)

2(1−xg)(ǫi·ǫf )Ma1,(n)
el

(A.12)

In the above, the first four channels are consistent with the simplified large-Nc picture,

where the radiation from a gluon is viewed as the incoherent superposition of the medium-

induced radiation from its quark and anti-quark legs. The last two channels, on the other

hand, represent contributions for which the q (q̄) leg radiates and the q̄ (q) leg exchanges

color with the medium. For these contributions, a distinction between initial state and final
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Figure 18. A contribution to Mdir
2 with its corresponding ‘a2a1a’ color flow (which gets contribu-

tion also from the diagram with the radiated gluon scattering on the first scattering center).

state radiation is not needed, since it does not affect the color ordering of the amplitude.

However, in the soft xg ≪ 1 limit, these last two channels give a subleading contribution.

Squaring these two amplitudes one would find a QED-like (‘Bethe-Heitler’) radiation spec-

trum that is O(x2g). On the other hand, the first four channels are not suppressed in the

soft limit and provide, to leading order in xg, an identical contribution: they sum up to

the well-known Gunion-Bertsch spectrum.

B Details on the N = 2 calculation

In section 4 we quoted the result for the color-differential radiation spectrum at order

N = 2 in opacity. The physical meaning of the various contributions became particularly

transparent by expressing the result in terms of the effective currents J i (i = 1, 2, 12). Here

we give details on how to derive these results. For this purpose, the calculation of a few

diagrams will be sufficient, the other ones will follow from the modified dependence on the

currents J i.

B.1 Direct contribution

We start by considering the direct term in the N = 2 spectrum. For illustration, we focus

on the ‘a2a1a’ channel that can be written as a sum of two terms,

Ma2a1a
2 ≡ M(I)

a2a1a + iM(II)
a2a1a , (B.1)

where M(I)
a2a1a is the contribution with the gluon radiated before any interaction with the

medium (see figure 18) and M(II)
a2a1a describes the radiated gluon interacting with the first

scattering center. The first term takes the explicit form

iM(I)
a2a1a =

∑

n1,n2

g(ta2ta1ta)(T a2
(n2)

T a1
(n1)

)

∫

dq−2
2π

∫

dq1
(2π)2

∫

dq2
(2π)2

e−iq1·xn1e−iq2·xn2

×ei(q
−

1 +q−2 )x+
n1eiq

−

2 (x+
n2

−x+
n1

)(i)[(2pf − q2)
+A(q2)]

i

(pf − q2)2 −M2 + iη

×(i)[(2pf − 2q2 − q1)
+A(q1)]

i

(pi − kg)2 −M2 + iη
(i)[(2pi − kg) · ǫg]. (B.2)

Here, the pole of the propagator (Q≡q1+q2)

i

(pf − q2)2 −M2 + iη
=

−i

2(1− xg)p+[q
−
2 − (

(Q−kg)2−(q1−kg)2

2(1−xg)p+
+ iη)]

(B.3)

– 36 –



J
H
E
P
0
7
(
2
0
1
2
)
1
4
4

allows one to perform the q−2 integration. Furthermore, momentum conservation implies

q−1 + q−2 =
k2
g

2xgp+
+

(Q− kg)
2 +M2

2(1− xg)p+
− M2

2p+
∼

xg≪1
ω0 . (B.4)

Up to O(xg) corrections, one gets

iM(I)
a2a1a = −g

∑

n1,n2

(ta2ta1ta)(T a2
(n2)

T a1
(n1)

)

∫

dq1
(2π)2

∫

dq2
(2π)2

e−iq1·xn1e−iq2·xn2

×eiω0xn1 A(q1)A(q2)

(

2ǫg ·
kg

k2
g + x2gM

2

)

2p+. (B.5)

Proceeding analogously with the contribution M(II)
a2a1a, one obtains

iMa2a1a
2 = −g

∑

n1,n2

(ta2ta1ta)(T a2
(n2)

T a1
(n1)

)

∫

dq1
(2π)2

∫

dq2
(2π)2

e−iq1·xn1e−iq2·xn2

×eiω0xn1A(q1)A(q2) (2ǫg · J1) 2p
+. (B.6)

After squaring, tracing over colors

1

dn
Tr
(

T ai
(n)T

ai′
(n′)

)

=
1

dn
δn,n′Tnδ

aiai′ , (B.7)

and averaging the phase factor over the transverse location of the scattering centers

1

A⊥

∫

dxne
−i(qn−qn′ )·x2 =

1

A⊥

(2π)2δ(qn − qn′) , (B.8)

one finds

〈|Ma2a1a
2 |2〉 = g2CF

∑

n1,n2

1

A⊥

CFTn1

dn1

∫

dq1
(2π)2

|A(q1)|2
1

A⊥

CFTn2

dn2

∫

dq2
(2π)2

|A(q2)|2 4|J1|2(2p+)2,

(B.9)

which can be written as

〈|Ma2a1a
2 |2〉 = 4g2CF

∑

n1,n2

(

σel

A⊥

)2 ∫

dq1

(

1

σel

dσel

dq1

)
∫

dq2

(

1

σel

dσel

dq2

)

|J1|2 (2p+)2 .

(B.10)

Here, σel denotes the quark elastic cross section. One has still to perform an average over

the longitudinal position of the scattering centers. Notice that in the above we assumed

x+n2
> x+n1

which implies

∑

n1,n2

(

1

L+

)2 ∫ L+

0
dx+n1

∫ L+

x+
n1

dx+n2
=

(

N

L+

)2 1

2
(L+)2 =

N2

2
. (B.11)

Recasting this expression in the form

(

σel

A⊥

)2
N2

2
=

(

σelN

A⊥L+

)2
(L+)2

2
=

(

L+

λ+
q

)2
1

2
, (B.12)
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M[a_2a_1a] M*[a_2a_1a]

Figure 19. The color flow in 〈|Ma2a1a
2

|2〉. Each disconnected loop gives rise to a factor Nc. Each

gluon line provides a factor 1/2 (due to the Fierz identity).

one finds

〈|Ma2a1a|2〉 = 4g2CF

(

L+

λ+
q

)2

|J−∞|2
〈〈

1

2
|J1|2

〉〉

q1,q2

, (B.13)

which coincides with the expression quoted in the text. Finally, the longitudinal average

of terms containing interference factors (which appear in other channels) can be performed

exploiting

∑

n1,n2

(

1

L+

)2 ∫ L+

0
dx+n1

∫ L+

x+
n1

dx+n2
cos[Ω(x+n2

− x+n1
)] = N2 1− cos[ΩL+]

(ΩL+)2
. (B.14)

The medium average Eq. (B.7) is the same as employed in standard color inclusive

calculations. It traces independently over the color of the scattering centers n1 and n2. We

emphasize that in the large-Nc limit this procedure does not affect the decomposition of the

radiation spectrum into distinct color channels. Here, we consider for simplicity the case in

which the scattering of the projectile occurs on a medium particle in the (anti-)fundamental

representation. After averaging over all the incoming colors, one has, according to eq. (B.9),

the overall color factor

CF
CFTF

dF

CFTF

dF
= CF

CF

2Nc

CF

2Nc
∼ Nc

32
. (B.15)

This result can also be obtained graphically from figure 19 with the simple rule that each

closed loop produces a factor Nc, and each gluon exchange, due to the Fierz identity

taijt
a
kl =

1

2
δilδjk −

1

2Nc
δijδkl ∼

1

2
δilδjk , (B.16)

gives rise in the large-Nc limit to a factor 1/2. One gets then for figure 19, after averaging

over the initial colors:
1

N3
c

N4
c

(

1

2

)5

=
Nc

32
, (B.17)

in agreement with eq. (B.15).
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B.2 Virtual contribution

Let us now address the evaluation of the 2Re〈Mvirt
3 M∗

1〉 contribution. The amplitude M3

interferes either with the initial-state radiation (aia channel)

iMin
1 ≡ iMaia

1 = (ig)
∑

i

(taita)

∫

dq′

(2π)2
e−iq′·xi 2 ǫg ·J(kg, q′) eiω0x

+
i (2p+)A(q′)T ai

(i) , (B.18)

or with the final-state radiation (aa1 channel)

iMfin
1 ≡ iMaai

1 = −(ig)
∑

i

(tatai)

∫

dq′

(2π)2
e−iq′·xi 2 ǫg ·J(kg, q′) eiω0x

+
i (2p+)A(q′)T ai

(i) .

(B.19)

The various terms contributing to Mvirt
3 can be obtained from the N =3 diagrams listed

in [36]. While each individual diagram can produce up to four different contributions

(x1 = x2 or x2 = x3, interference with Min
1 and Mfin

1 ), only some of them yield a leading

contribution in the large-Nc limit. Their expression can be directly read from [36] after

taking properly the contact limit of two of the three scattering centers. To fix the exact

overall factors it is sufficient to consider one case, e.g. the term with the gluon radiated

before the interaction with the first scattering center and with a double interaction at

the second one (see figure 11). This corresponds to the first of the 15 diagrams shown in

appendix C of ref. [36] (hence we label it as ‘I’). After setting x2≡x3 and considering the

projectile arriving on-shell, one has

iMvirt (I)
a′jajaia

=
∑

i<j

g(ta
′

j taj taita)(T
a′j
(j)T

aj
(j))T

ai
(i)

∫

dq1
(2π)2

∫

dq2
(2π)2

∫

dq3
(2π)2

∫

dq−23
2π

∫

dq−3
2π

×e−iq1·xie−i(q2+q3)·xjei(q1+q2+q3)−x+
i ei(q2+q3)−(xj−xi)

+

(i)[(2pf − q3)
+A(q3)]

× i

(pf − q3)2 −M2 + iη
(i)[(2pf − 2q3 − q2)

+A(q2)]
i

(pf − q2 − q3)2 −M2 + iη

×(i)[(2pf − 2q3 − 2q2 − q1)
+A(q1)]

i

(pi − kg)2 −M2 + iη
(i)[(2pi−kg) · ǫg], (B.20)

where q−23≡q−2 +q
−
3 . Furthermore, from the on-shell condition and momentum conservation

one has

(q1+q2+q3)
− =

k2
g

2xgp+
+

(Q−kg)
2

2(1−xg)p+
− M2

2p+
≈ω0 . (Q ≡ q1 + q2 + q3) (B.21)

This fixes q−1 . The integration over q−23 can be evaluated picking the pole in the complex

upper half-plane of the propagator

i

(pf − q2 − q3)2 −M2 + iη
=

(−i)

2(1− xg)p+
[

q−23 −
(

(Q−kg)2−(q1−kg)2

2(1−xg)p+
+ iη

)] , (B.22)

which in the high-energy limit lies at q−23 ≈ iη. For what concerns the integration over q−3 ,

in the contact limit, no phase factor is present and one no longer closes the contour in the
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complex plane. However one can rely on the following representation of the Dirac delta

(no contribution to the integration arises from the imaginary part):

i

(pf − q3)2 −M2 + iη
=

(−i)

2(1− xg)p+
[

q−3 −
(

(Q−kg)2−(q1+q2−kg)2

2(1−xg)p+
+ iη

)]

=
π

2(1− xg)p+
1

π

η
[

q−3 − (Q−kg)2−(q1+q2−kg)2

2(1−xg)p+

]2
+ η2

≈ π

2(1− xg)p+
δ(q−3 ). (B.23)

We thus obtain in the soft limit

iMvirt (I)
a′jajaia

≈ (−i)
g

2

∑

i<j

g(ta
′

j taj taita)(T
a′j
(j)T

aj
(j))T

ai
(i)

∫

dq1
(2π)2

∫

dq2
(2π)2

∫

dq3
(2π)2

×e−iq1·xie−i(q2+q3)·xjeiω0x
+
i A(q3)A(q2) (2p+)A(q1)

(

2ǫg ·
kg

k2
g + x2gM

2

)

.

(B.24)

We now evaluate the interference with the N = 1 amplitude, taking as usual the proper

medium average (over colors, transverse and longitudinal location of the scattering centers).

The contribution from the final-state radiation channel is vanishing,

2Re〈Mvirt (I)
a′jajaia

(Mfin
1 )∗〉 = 0 . (B.25)

For the interference with the initial state radiation one gets

2Re〈Mvirt (I)
a′jajaia

(Min
1 )

∗〉 = −4g2CF

(

L+

λ+
q

)2

|J−∞|2 1
2

〈〈

kg

k2
g + x2gM

2
·J(kg, q1)

〉〉

q1,q2

.

(B.26)

The other contributions can be evaluated analogously.
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