Erratum

Erratum to: A study of vorticity formation in high energy nuclear collisions

F. Becattini^{1,2,a}, G. Inghirami^{1,3}, V. Rolando^{4,5}, A. Beraudo⁶, L. Del Zanna^{1,2,7}, A. De Pace⁶, M. Nardi⁶, G. Pagliara^{4,5}, V. Chandra⁸

¹ Dipartimento di Fisica e Astronomia, Università di Firenze, Via G. Sansone 1, 50019 Sesto F.no (Firenze), Italy

² INFN, Sezione di Firenze, Via G. Sansone 1, 50019 Sesto F.no (Firenze), Italy

- ³ Frankfurt Institute for Advanced Studies (FIAS), Johann Wolfgang Goethe University, Frankfurt am Main, Germany
- ⁴ Dipartimento di Fisica e Scienze della Terra, Universitá di Ferrara, Via Saragat 1, 44100 Ferrara, Italy
- ⁵ INFN, Sezione di Ferrara, Via Saragat 1, 44100 Ferrara, Italy
- ⁶ INFN, Sezione di Torino, Via P. Giuria 1, 10125 Turin, Italy
- ⁷ INAF, Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, 50125 Florence, Italy

⁸ Indian Institute of Technology Gandhinagar, Ahmedabad, Gujarat 382424, India

Received: 1 March 2018 / Accepted: 12 April 2018 / Published online: 3 May 2018 © The Author(s) 2018

Erratum to: Eur. Phys. J. C (2015) 75:406 https://doi.org/10.1140/epjc/s10052-015-3624-1

Due to an oversight of ours in proofreading and a communication problem with the publisher, the figures published in F. Becattini et al. Eur. Phys. J. C (2015) 75:406 were not correct. This Erratum contains the correct figures (Figs. 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) as in arXiv:1501.04468

The original article can be found online at https://doi.org/10.1140/epjc/s10052-015-3624-1.

[v2], submitted on March 12 2015, and the post-publication version arXiv:1501.04468 [v3], submitted on August 17 2015.

Fig. 3 Contour plot of $\Omega_{x\eta}/\tau T^2$ at the freeze-out hypersurface at y = 0

CrossMark

^ae-mail: becattini@fi.infn.it

Fig. 5 Mean of the absolute values of $\Omega_{\mu\nu}/T^2$ components at the freeze-out hypersurface as a function of η/s . Note that the $\Omega_{x\eta}$, $\Omega_{y\eta}$, $\Omega_{\tau\eta}$ have been multiplied by $1/\tau$. Upper panel: log scale. Lower panel: magnification of the region around zero viscosity

Fig. 6 Directed flow of pions for different values of η_m parameter with $\eta/s = 0.1$ compared with STAR data [1]

Fig. 7 Directed flow of pions for different values of η/s with $\eta_m = 2.0$ compared with STAR data [1]

Fig. 8 Directed flow of pions at $\eta/s = 0.1$ and $\eta_m = 2.0$ compared with STAR data [1]

Fig. 9 Angular momentum (in \hbar units) of the plasma with Bjorken initial conditions as a function of the parameter η_m

Fig. 10 Estimated angular momentum $(in \hbar units)$ of the overlap region of the two colliding nuclei (solid line) and total angular momentum of the plasma according to the parametrization of the initial conditions (dashed line), as a function of the impact parameter

Fig. 11 Mean of the absolute value of thermal vorticity covariant components at the freeze-out as a function of η/s . Note that the $\varpi_{x\eta}, \varpi_{y\eta}, \varpi_{\tau\eta}$ have been multiplied by $1/\tau$

Fig. 12 Mean values of thermal vorticity components at the freeze-out as a function of η/s . Note that the $\varpi_{x\eta}$, $\varpi_{y\eta}$, $\varpi_{\tau\eta}$ have been multiplied by $1/\tau$

Fig. 13 Contour plot of $1/\tau$ -scaled ηx covariant component of the thermal vorticity, $\varpi_{\eta x}/\tau$ over the freeze-out hypersurface for y = 0, $\eta/s = 0.1$, $\eta_m = 2.0$

Fig. 14 Magnitude (a) and components (b-d) of the polarization vector of the Λ hyperon in its rest frame

Fig. 15 Directed flow of pions at $\eta/s = 0.1$ and $\eta_m = 2.0$ and with initial $u^{\eta} = \frac{1}{\tau} \tanh Ax \sinh(y_{\text{beam}} - |\eta|)$ as in the eq. (36) of the amended paper (Eur. Phys. J. C (2015) 75:406) compared with STAR data [1]

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecomm ons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP³.

Reference

 B.I. Abelev et al. (STAR Collaboration), Phys. Rev. Lett. 101, 252301 (2008)