14 research outputs found

    Differentiation of Human Adipose-Derived Stem Cells into “Brite” (Brown-in-White) Adipocytes

    Get PDF
    It is well established now that adult humans possess active brown adipose tissue (BAT) which represents a potential pharmacological target to combat obesity and associated diseases. Moreover thermogenic brown-like adipocytes (“brite adipocytes”) appear also in mouse white adipose tissue (WAT) upon ÎČ3-adrenergic stimulation. We had previously shown that human multipotent adipose-derived stem cells (hMADS) are able to differentiate into cells which exhibit the key properties of human white adipocytes, and then to convert into functional brown adipocytes upon PPARÎł activation. In light of a wealth of data indicating that thermogenic adipocytes from BAT and WAT have a distinct cellular origin, we have characterized at the molecular level UCP1 positive hMADS adipocytes from both sexes as brite adipocytes. Conversion of white to brown hMADS adipocytes is dependent on PPARÎł activation with rosiglitazone as the most potent agonist and is inhibited by a PPARÎł antagonist. In contrast to mouse cellular models, hMADS cells conversion into brown adipocytes is weakly induced by BMP7 treatment and not modulated by activation of the Hedgehog pathway. So far no primary or clonal precursor cells of human brown adipocytes have been obtained that can be used as a tool to develop therapeutic drugs and to gain further insights into the molecular mechanisms of brown adipogenesis in humans. Thus hMADS cells represent a suitable human cell model to delineate the formation and/or the uncoupling capacity of brown/brite adipocytes that could help to dissipate caloric excess intake among individuals

    Differential binding of poly(ADP-Ribose) polymerase-1 and JunD/Fra2 accounts for RANKL-induced Tcirg1 gene expression during osteoclastogenesis.

    No full text
    We studied Tcirg1 gene expression on RANKL-induced osteoclastic differentiation of the mouse model RAW264.7 cells. We identified a mechanism involving PARP-1 inhibition release and JunD/Fra-2 binding, which is responsible for Tcirg1 gene upregulation. INTRODUCTION: The Tcirg1 gene encodes the a3 isoform of the V-ATPase a subunit, which plays a critical role in the resorption activity of the osteoclast. Using serial deletion constructs of the Tcirg1 gene promoter, we performed a transcriptional study to identify factor(s) involved in the regulation of the RANKL-induced gene expression. MATERIALS AND METHODS: The promoter activity of serial-deletion fragments of the Tcirg1 gene promoter was monitored throughout the RAW264.7 cells differentiation process. We next performed sequence analysis, EMSA, UV cross-linking, qPCR, and gel supershift experiments to identify the factor(s) interacting with the promoter. RESULTS: A deletion of the -1297-1244 region led to the disappearance of the RANKL-induced promoter activity. EMSA experiments showed the binding of two factors that undergo differential binding on RANKL treatment. Supershift experiments led us to identify the dimer JunD/Fra-2 as the binding activity associated with the -1297/-1268 Tcirg1 gene promoter sequence in response to RANKL. Moreover, we observed poly(ADP-ribose) polymerase-1 (PARP-1) binding to an adjacent site (-1270/-1256), and this interaction was disrupted after RANKL treatment. CONCLUSIONS: We provide data that identify junD proto-oncogene (JunD) and Fos-related antigen 2 (Fra-2) as the activator protein-1 (AP-1) factors responsible for the RANKL-induced upregulation of the mouse Tcirg1 gene expression. Moreover, we identified another binding site for PARP-1 that might account for the repression of Tcirg1 gene expression in pre-osteoclastic cells

    In vitro brown and "brite"/"beige" adipogenesis: Human cellular models and molecular aspects.

    No full text
    International audienceBrown adipose tissue (BAT) has long been thought to be absent or very scarce in human adults so that its contribution to energy expenditure was not considered as relevant. The recent discovery of thermogenic BAT in human adults opened the field for innovative strategies to combat overweight/obesity and associated diseases. This energy-dissipating function of BAT is responsible for adaptive thermogenesis in response to cold stimulation. In this context, adipocytes can be converted, within white adipose tissue (WAT), into multilocular adipocytes expressing UCP1, a mitochondrial protein that plays a key role in heat production by uncoupling the activity of the respiratory chain from ATP synthesis. These adipocytes have been named "brite" or "beige" adipocytes. Whereas BAT has been studied for a long time in murine models both in vivo and in vitro, there is now a strong demand for human cellular models to validate and/or identify critical factors involved in the induction of a thermogenic program within adipocytes. In this review we will discuss the different human cellular models described in the literature and what is known regarding the regulation of their differentiation and/or activation process. In addition, the role of microRNAs as novel regulators of brown/"brite" adipocyte differentiation and conversion will be depicted. Finally, investigation of both the conversion and the metabolism of white-to-brown converted adipocytes is required for the development of therapeutic strategies targeting overweight/obesity and associated diseases. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease

    Poly(adp-ribose) polymerase-1 regulates Tracp gene promoter activity during RANKL-induced osteoclastogenesis.

    No full text
    The Tracp gene encodes an acid phosphatase strongly upregulated during osteoclastogenesis on RANKL treatment. Using the mouse osteoclastic model RAW264.7, we studied Tracp gene expression, and we identified PARP-1 as a transcriptional repressor negatively regulated by RANKL during osteoclastogenesis. INTRODUCTION: The Tracp gene encodes an acid phosphatase strongly expressed in differentiated osteoclasts. TRACP enzyme has a dual role and is involved in (1) the regulation of the biological activity of the bone matrix phosphoproteins osteopontin and bone sialoprotein and (2) the intracellular collagen degradation. Based on our previous work on Tcirg1 gene expression, and using data available in the literature, we focused on a 200-bp sequence located upstream the Tracp gene transcriptional start to identify binding activities. MATERIALS AND METHODS: We first performed siRNA transfections and RAW264.7 cell treatment with an inhibitor of poly(ADP-ribose) polymerase-1 (PARP-1) activity. After EMSA and supershift experiments, we measured the promoter activity of wildtype and mutant constructs throughout the osteoclastic differentiation. RESULTS: We first showed that depleting PARP-1 mRNA in the pre-osteoclastic cell line RAW264.7 results in an increase of both matrix metalloproteinase 9 and TRACP mRNA expression (3.5- and 2.5-fold, respectively). Moreover, in response to 3-aminobenzamide treatment, we measured a weak stimulation of MMP9 mRNA expression, whereas up to a 2-fold enhancement above the control condition of TRACP mRNA expression was observed. We next identified in the -839/-639 Tracp promoter region a PARP-1 binding site, and supershift experiments showed the interaction of a PARP-1 binding activity with the Tracp promoter sequence -830/-808. Finally, RAW264.7 cell transfection with a promoter construct mutated for this PARP-1 interacting sequence showed the functionality of this site within intact pre-osteoclastic cells. CONCLUSIONS: In this study, we provide evidence that the transcriptional activity of the Tracp gene, in pre-osteoclastic cells, is negatively regulated by the binding of PARP-1 protein to a potential consensus sequence located in its promoter region. Taken together with our previous results related to the control of Tcirg1 gene expression, our data suggest that PARP-1 exerts a pivotal role in the basal repression of genes that are upregulated during RANKL-induced osteoclastogenesis

    The ω6-fatty acid, arachidonic acid, regulates the conversion of white to brite adipocyte through a prostaglandin/calcium mediated pathway

    No full text
    Objective: Brite adipocytes are inducible energy-dissipating cells expressing UCP1 which appear within white adipose tissue of healthy adult individuals. Recruitment of these cells represents a potential strategy to fight obesity and associated diseases. Methods/Results: Using human Multipotent Adipose-Derived Stem cells, able to convert into brite adipocytes, we show that arachidonic acid strongly inhibits brite adipocyte formation via a cyclooxygenase pathway leading to secretion of PGE2 and PGF2α. Both prostaglandins induce an oscillatory Ca++ signaling coupled to ERK pathway and trigger a decrease in UCP1 expression and in oxygen consumption without altering mitochondriogenesis. In mice fed a standard diet supplemented with ω6 arachidonic acid, PGF2α and PGE2 amounts are increased in subcutaneous white adipose tissue and associated with a decrease in the recruitment of brite adipocytes. Conclusion: Our results suggest that dietary excess of ω6 polyunsaturated fatty acids present in Western diets, may also favor obesity by preventing the “browning” process to take place

    The K+ channel TASK1 modulates ÎČ-adrenergic response in brown adipose tissue through the mineralocorticoid receptor pathway

    No full text
    Brown adipose tissue (BAT) is essential for adaptive thermogenesis and dissipation of caloric excess through the activity of uncoupling protein (UCP)-1. BAT in humans is of great interest for the treatment of obesity and related diseases. In this study, the expression of Twik-related acid-sensitive K(+) channel (TASK)-1 [a pH-sensitive potassium channel encoded by the potassium channel, 2-pore domain, subfamily K, member 3 (Kcnk3) gene] correlated highly with Ucp1 expression in obese and cold-exposed mice. In addition, Task1-null mice, compared with their controls, became overweight, mainly because of an increase in white adipose tissue mass and BAT whitening. Task1(-/-)-mouse-derived brown adipocytes, compared with wild-type mouse-derived brown adipocytes, displayed an impaired ÎČ3-adrenergic receptor response that was characterized by a decrease in oxygen consumption, Ucp1 expression, and lipolysis. This phenotype was thought to be caused by an exacerbation of mineralocorticoid receptor (MR) signaling, given that it was mimicked by corticoids and reversed by an MR inhibitor. We concluded that the K(+) channel TASK1 controls the thermogenic activity in brown adipocytes through modulation of ÎČ-adrenergic receptor signaling.-Pisani, D. F., Beranger, G. E., Corinus, A., Giroud, M., Ghandour, R. A., Altirriba, J., Chambard, J.-C., Mazure, N. M., Bendahhou, S., Duranton, C., Michiels, J.-F., Frontini, A., Rohner-Jeanrenaud, F., Cinti, S., Christian, M., Barhanin, J., Amri, E.-Z. The K(+) channel TASK1 modulates ÎČ-adrenergic response in brown adipose tissue through the mineralocorticoid receptor pathway

    RANKL Treatment Releases the Negative Regulation of the Poly(ADP-Ribose) Polymerase-1 on Tcirg1 Gene Expression During Osteoclastogenesis.

    No full text
    The Tcirg1 gene encodes the osteoclast-specific a3 isoform of the V-ATPase a subunit. Using the mouse osteoclastic model RAW264.7 cells, we studied Tcirg1 gene expression, and we identified PARP-1 as a transcriptional repressor negatively regulated by RANKL during osteoclastogenesis. Introduction: The TCIRG1 gene encodes the a3 isoform of the V-ATPase a subunit, and mutations at this locus account for approximately 60% of infantile malignant osteopetrosis cases. Using RAW264.7 cells as an osteoclastic differentiation model, we undertook a transcriptional study of the mouse Tcirg1 gene focused on the 4-kb region upstream of the transcription starting point. Materials and Methods: The promoter activity of serial-deletion fragments of the Tcirg1 gene promoter was monitored throughout the RAW264.7 cell differentiation process. We next performed EMSA, UV cross-linking, affinity purification, mass spectrometry analysis, gel supershift, and siRNA transfection experiments to identify the factor(s) interacting with the promoter. Results: The -3946/+113 region of the mouse Tcirg1 gene displayed a high basal promoter activity, which was enhanced by RANKL treatment of RAW264.7 cells. Constructs deleted up to -1589 retained this response to RANKL. A deletion up to -1402 induced a 3-fold enhancement of the basal activity, whereas RANKL response was not affected. EMSA experiments led us to identify within the -1589/-1402 region, a 10-nucleotide sequence, which bound a nuclear protein present in nondifferentiated RAW264.7 cells. This interaction was lost using nuclear extracts derived from RANKL-treated cells. Affinity purification followed by mass spectrometry analysis and gel supershift assay allowed the identification of poly(ADP-ribose) polymerase-1 (PARP-1) as this transcriptional repressor, whereas Western blot experiments revealed the cleavage of the DNA-binding domain of PARP-1 on RANKL treatment. Finally, both PARP-1 depletion after siRNA transfection and RAW264.7 cell treatment by an inhibitor of PARP-1 activity induced an increase of a3 mRNA expression. Conclusions: We provide evidence that the basal transcription activity of the Tcirg1 gene is negatively regulated by the binding of PARP-1 protein to its promoter region in mouse pre-osteoclast. On RANKL treatment, PARP-1 protein is cleaved and loses its repression effect, allowing an increase of Tcirg1 gene expression that is critical for osteoclast function

    Oxytocin Reverses Ovariectomy-Induced Osteopenia and Body Fat Gain

    No full text
    Osteoporosis and overweight/obesity constitute major worldwide public health burdens that are associated with aging. A high proportion of women develop osteoporosis and increased intraabdominal adiposity after menopause. which leads to bone fractures and metabolic disorders. There is no efficient treatment without major side effects for these 2 diseases. We previously showed that the administration of oxytocin (OT) normalizes ovariectomy-induced osteopenia and bone marrow adiposity in mice. Ovariectomized mice, used as an animal model mimicking menopause, were treated with OT or vehicle. Trabecular bone parameters and fat mass were analyzed using micro-computed tomography. Herein, we show that this effect on trabecular bone parameters was mediated through the restoration of osteoblast/osteoclast cross talk via the receptor activator of nuclear factor-ÎșB ligand /osteoprotegerin axis. Moreover, the daily administration of OT normalized body weight and intraabdominal fat depots in ovariectomized mice. Intraabdominal fat mass is more sensitive to OT that sc fat depots, and this inhibitory effect is mediated through inhibition of adipocyte precursor's differentiation with a tendency to lower adipocyte size. OT treatment did not affect food intake, locomotors activity, or energy expenditure, but it did promote a shift in fuel utilization favoring lipid oxidation. In addition, the decrease in fat mass resulted from the inhibition of the adipose precursor's differentiation. Thus, OT constitutes an effective strategy for targeting osteopenia, overweight, and fat mass redistribution without any detrimental effects in a mouse model mimicking the menopause
    corecore