103 research outputs found

    A machine learning assessment of the two states model for lipid bilayer phase transitions

    Full text link
    We have adapted a set of classification algorithms, also known as Machine Learning, to the identification of fluid and gel domains close to the main transition of dipalmitoyl-phosphatidylcholine (DPPC) bilayers. Using atomistic molecular dynamics conformations in the low and high temperature phases as learning sets, the algorithm was trained to categorize individual lipid configurations as fluid or gel, in relation with the usual two-states phenomenological description of the lipid melting transition. We demonstrate that our machine can learn and sort lipids according to their most likely state without prior assumption regarding the nature of the order parameter of the transition. Results from our machine learning approach provides strong support in favor of a two-states model approach of membrane fluidity

    Early precipitated micropyrite in microbialites: A time capsule of microbial sulfur cycling

    Get PDF
    Microbialites are organosedimentary rocks that have occurred throughout the Earth’s history. The relationships between diverse microbial metabolic activities and isotopic signatures in biominerals forming within these microbialites are key to understanding modern biogeochemical cycles, but also for accurate interpretation of the geologic record. Here, we performed detailed mineralogical investigations coupled with NanoSIMS (Nanoscale Secondary Ion Mass Spectrometry) analyses of pyrite S isotopes in mineralising microbial mats from two different environments, a hypersaline lagoon (Cayo Coco, Cuba) and a volcanic alkaline crater lake (Atexcac, Mexico). Both microbialite samples contain two distinct pyrite morphologies: framboids and euhedral micropyrites, which display distinct ranges of δ34S values1. Considering the sulfate-sulfur isotopic compositions associated with both environments, micropyrites display a remarkably narrow range of Δpyr (i.e. Δpyr ≡ δ34SSO4 − δ34Spyr) between 56 and 62‰. These measured Δpyr values agree with sulfate-sulfide equilibrium fractionation, as observed in natural settings characterised by low microbial sulfate reduction respiration rates. Moreover, the distribution of S isotope compositions recorded in the studied micropyrites suggests that sulfide oxidation also occurred at the microbialite scale. These results highlight the potential of micropyrites to capture signatures of microbial sulfur cycling and show that S isotope composition in pyrites record primarily the local micro-environments induced by the microbialite

    Observations of Rocks in Jezero Landing Site: SuperCam/LIBS technique overview of results from the first six months of operations.

    Get PDF
    On-board the Perseverance rover, the SuperCam instrument is being used as a remote-sensing facility to analyze rocks and soils targets. SuperCam is a suite of five coaligned techniques: just like ChemCam (onboard MSL/Curiosity rover on Mars since 2012), it uses the Laser Induced Breakdown Spectroscopy (LIBS) technique to determine the elementary composition of the targets, but it also uses Raman (for the first time in planetary science) and visible-infrared (VISIR - for the first time in situ) spectroscopic methods in order to access some mineralogical and structural information. A microphone gives access to some physical parameters of the sampled rocks (such as hardness) as well as to some atmospheric parameters (wind direction). These chemical and mineralogical analyses are contextualized thanks to a color remote micro-imager (RMI). In this study, we focus mainly on the LIBS results obtained so far

    The SuperCam Remote Sensing Instrument Suite for Mars 2020

    No full text
    International audienceThe Mars 2020 rover, essentially a structural twin of MSL, is being built to a) characterize the geology and history of a new landing site on Mars, b) find and characterize ancient habitable environments, c) cache samples for eventual return to Earth, and d) demonstrate in-situ production of oxygen needed for human exploration. Remote-sensing instrumentation is needed to support the first three of these goals [1]. The SuperCam instrument meets these needs with a range of instrumentation including the highest-resolution remote imaging on the rover, two different techniques for determining mineralogy , and one technique to provide elemental compositions. All of these techniques are co-boresighted, providing rapid comprehensive characterization. In addition, for targets within 7 meters of the rover the laser shock waves brush away the dust, providing cleaner surfaces for analysis. SuperCam will use an advanced version of the AEGIS robotic target selection software

    The Cyst-Dividing Bacterium Ramlibacter tataouinensis TTB310 Genome Reveals a Well-Stocked Toolbox for Adaptation to a Desert Environment

    Get PDF
    Ramlibacter tataouinensis TTB310T (strain TTB310), a betaproteobacterium isolated from a semi-arid region of South Tunisia (Tataouine), is characterized by the presence of both spherical and rod-shaped cells in pure culture. Cell division of strain TTB310 occurs by the binary fission of spherical “cyst-like” cells (“cyst-cyst” division). The rod-shaped cells formed at the periphery of a colony (consisting mainly of cysts) are highly motile and colonize a new environment, where they form a new colony by reversion to cyst-like cells. This unique cell cycle of strain TTB310, with desiccation tolerant cyst-like cells capable of division and desiccation sensitive motile rods capable of dissemination, appears to be a novel adaptation for life in a hot and dry desert environment. In order to gain insights into strain TTB310's underlying genetic repertoire and possible mechanisms responsible for its unusual lifestyle, the genome of strain TTB310 was completely sequenced and subsequently annotated. The complete genome consists of a single circular chromosome of 4,070,194 bp with an average G+C content of 70.0%, the highest among the Betaproteobacteria sequenced to date, with total of 3,899 predicted coding sequences covering 92% of the genome. We found that strain TTB310 has developed a highly complex network of two-component systems, which may utilize responses to light and perhaps a rudimentary circadian hourglass to anticipate water availability at the dew time in the middle/end of the desert winter nights and thus direct the growth window to cyclic water availability times. Other interesting features of the strain TTB310 genome that appear to be important for desiccation tolerance, including intermediary metabolism compounds such as trehalose or polyhydroxyalkanoate, and signal transduction pathways, are presented and discussed

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds

    Standards for Libraries in Higher Education

    Get PDF
    The Standards for Libraries in Higher Education are designed to guide academic libraries in advancing and sustaining their role as partners in educating students, achieving their institutions’ missions, and positioning libraries as leaders in assessment and continuous improvement on their campuses. Libraries must demonstrate their value and document their contributions to overall institutional effectiveness and be prepared to address changes in higher education. These Standards were developed through study and consideration of new and emerging issues and trends in libraries, higher education, and accrediting practices. These Standards differ from previous versions by articulating expectations for library contributions to institutional effectiveness. These Standards differ structurally by providing a comprehensive framework using an outcomes-based approach, with evidence collected in ways most appropriate for each institution

    Etudes théoriques des fluides confinés en milieux poreux et des supramolécules en solution

    No full text
    LYON-ENS Sciences (693872304) / SudocSudocFranceF

    Pétrologie et géochimie de matériaux carbonés et des minéralisations associées en zone de subduction

    No full text
    Le carbone est un élément essentiel à la surface de la Terre. Il entre aussi bien dans la composition de certains minéraux (carbonates) que dans les molécules du vivant. Les roches métamorphiques contiennent également des matériaux carbonés (MC) dont l origine peut être variée. Les MC sous forme solide (matériaux carbonés partiellement ou parfaitement graphitisés) jouent un rôle majeur dans l évolution pétrologique et géochimique d une roche enfouie en zone de subduction. Si notre connaissance des MC métamorphiques a largement progressée ces dernières années sur la base d études naturalistes, expérimentales ou théoriques, il reste de nombreuses questions par exemple autour de la détermination des sources des MC dans les roches métamorphiques. Le rôle des minéralisations en tant que facteur de préservation des MC d origine biologique (biogénique) est encore mal compris. Nous avons étudié des échantillons naturels (formation Marybank, Nouvelle Zélande) métamorphisés dans le facies schiste bleu et contenant des fossiles végétaux graphitisés et montrant une remarquable préservation morphologique. Nous dressons ainsi un inventaire des processus minéralogiques et chimiques ayant contribué à préserver, ou oblitérer, certaines informations portées par le matériau biologique originel, et plus généralement par le fossile. Pour ce faire, nous avons employé des techniques de caractérisation minéralogiques et géochimiques à haute résolution spatiale des MC fossiles et des minéraux. Nous montrons ainsi que la remarquable préservation morphologique s accompagne d une recristallisation avancée de la minéralogie et des MC constituant le fossile. Nous mettons aussi en évidence la présence spectaculaire de nanoparticules de TiO2 dans les MC des fossiles et nous discutons des mécanismes possibles de formation de ces minéralisations exceptionnelles.Il existe des mécanismes complexes, abiotiques, fortement liés aux interactions fluide-roche et permettant la formation de MC graphitiques dans les roches métamorphiques. Ces processus rendent complexe l étude et l interprétation des MC dans les roches. Toutefois, ils révèlent le rôle majeur des fluides et des assemblages minéraux dans la dynamique métamorphique du carbone. Nous avons réalisé l étude détaillée d un contact entre des serpentinites et des métasédiments (Malaspina, Corse Alpine) au niveau duquel les métasédiments sont décarbonatés. A cause des conditions réductrices imposées par les serpentinites sous-jacentes, le carbone inorganique ainsi libéré précipite sous forme de graphite. Nous employons des méthodes géochimiques, minéralogiques et pétrologiques complémentaires qui permettent de distinguer différentes catégories de matériaux carbonés dans ces roches, mais aussi de proposer un scénario bien contraint de formation abiotique du graphite. Cette étude permet alors de discuter du rôle des gradients redox sur la dynamique du carbone dans une roche métamorphique. L ensemble de ces travaux sont autant d exemples qui soulignent certains aspects encore peu explorés du rôle pétrologique fondamental des MC dans les roches métamorphiques.Carbon is an essential element on the Earth s surface. It is involved in the formation of certain minerals (carbonates) as well as biomolecules. Metamorphic rocks also contain carbonaceous materials (CM) with various possible origins. Solid CM (partially or completely graphitized CM) play a major role in the petrological and geochemical evolution of a subducted rock. If our knowledge of metamorphic CM increased over the last years based on naturalist, experimental or theoretical studies, many issues remain as to the source of CM in metamorphic rocks for example.The role of mineralization as a factor of preservation of CM of biological origin (biogenic) is still poorly understood. We studied natural samples (Marybank formation, New Zealand) metamorphozed in the blueschist facies and which contain carbonaceous plant fossils that display a remarkable morphological preservation at the microscopic scale. We investigate mineralogical and chemical processes that contributed to preserve, or obliterate, information carried by the original biomaterial, and, more generally, by the fossil. To do so, we have characterized the fossils and the minerals using analytical technics with high special resolution. We show that the remarkable morphological preservation is accompanied by the advanced recristallization of the mineralogy compositing the fossils. We also show the presence of spectacular TiO2 mineral nanocristals in the CM composing the fossils and we discuss about possible mechanisms leading to the formation of these exceptional mineralizations.Complex abiotic processes, intimately linked to fluid-rock interactions, allow the formation of graphitic CM in metamorphic rocks. These processes hinder the study and interpretation of CM in rocks. Nevertheless, they also reveal the major role of fluids and mineral assemblages in the metamorphic dynamics of carbon. We carried a detailed study of a contact between serpentinites and metasediments (Malaspina, Alpine Corsica) that display complete carbonate destabilization. Because of the reduced conditions imposed by the underlying serpentinite, the inorganic carbon released has precipitated and formed graphite. We use geochemical, mineralogical and petrological complementary tools that allow to distinguish different categories of CM in these rocks, and we propose a well constrained scenario for the formation for this abiotic graphite. This study allows discussing the role of redox gradients on the dynamics of carbon in a metamorphic rock.These are all examples stressing the important, and yet poorly explored, petrological role of CM in metamorphic rocks.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    MLLPA:A Machine Learning-assisted Python module to study phase-specific events in lipid membranes

    No full text
    International audienceMLLPA is a new Python 3 module developed to analyse phase domains in a lipid membrane based on lipid molecular states. Reading standard simulation coordinate and trajectory files, the software first analyse the phase composition of the lipid membrane by using Machine Learning tools to label each individual molecules with respect to their state, and then decompose the simulation box using Voronoi tessellations to analyse the local environment of all the molecules of interest. MLLPA is versatile as it can read from multiple format (e.g. GROMACS, LAMMPS) and from either all-atom (e.g. CHARMM36) or coarse-grain models (e.g. Martini). It can also analyse multiple geometries of membranes (e.g. bilayers, vesicles). Finally, the software allows for training with more than two phases, allowing for multiple phase coexistence analysis
    corecore