502 research outputs found

    Systemic Lipopolysaccharide Exposure Exacerbates Choroidal Neovascularization in Mice.

    Get PDF
    This study aims to investigate the effect of a systemic lipopolysaccharide (LPS) stimulus in the course of laser-induced choroidal neovascularization (CNV) in C57BL/6 J mice. A group of CNV-subjected mice received 1 mg/kg LPS via the tail vein immediately after CNV induction. Mouse eyes were monitored in vivo with fluorescein angiography for 2 weeks. In situ hybridization and flow cytometry were performed in the retina at different time points. LPS led to increased fluorescein leakage 3 days after CNV, correlated with a large influx of monocyte-derived macrophages and increase of pro-inflammatory microglia/macrophages in the retina. Additionally, LPS enhanced Vegfα mRNA expression by Glul-expressing cells but not Aif1 positive microglia/macrophages in the laser lesion. These findings suggest that systemic LPS exposure has transient detrimental effects in the course of CNV through activation of microglia/macrophages to a pro-inflammatory phenotype and supports the important role of these cells in the CNV course

    Endothelial Toll-like receptor 4 is required for microglia activation in the murine retina after systemic lipopolysaccharide exposure.

    Get PDF
    BACKGROUND Clustering of microglia around the vasculature has been reported in the retina and the brain after systemic administration of lipopolysaccharides (LPS) in mice. LPS acts via activation of Toll-like receptor 4 (TRL4), which is expressed in several cell types including microglia, monocytes and vascular endothelial cells. The purpose of this study was to investigate the effect of systemic LPS in the pigmented mouse retina and the involvement of endothelial TLR4 in LPS-induced retinal microglia activation. METHODS C57BL/6J, conditional knockout mice that lack Tlr4 expression selectively on endothelial cells (TekCre-posTlr4loxP/loxP) and TekCre-negTlr4loxP/loxP mice were used. The mice were injected with 1 mg/kg LPS via the tail vein once per day for a total of 4 days. Prior to initiation of LPS injections and approximately 5 h after the last injection, in vivo imaging using fluorescein angiography and spectral-domain optical coherence tomography was performed. Immunohistochemistry, flow cytometry, electroretinography and transmission electron microscopy were utilized to investigate the role of endothelial TLR4 in LPS-induced microglia activation and retinal function. RESULTS Activation of microglia, infiltration of monocyte-derived macrophages, impaired ribbon synapse organization and retinal dysfunction were observed after the LPS exposure in C57BL/6J and TekCre-negTlr4loxP/loxP mice. None of these effects were observed in the retinas of conditional Tlr4 knockout mice after the LPS challenge. CONCLUSIONS The findings of the present study suggest that systemic LPS exposure can have detrimental effects in the healthy retina and that TLR4 expressed on endothelial cells is essential for retinal microglia activation and retinal dysfunction upon systemic LPS challenge. This important finding provides new insights into the role of microglia-endothelial cell interaction in inflammatory retinal disease

    Mena/VASP and αII-Spectrin complexes regulate cytoplasmic actin networks in cardiomyocytes and protect from conduction abnormalities and dilated cardiomyopathy

    Get PDF
    BACKGROUND: In the heart, cytoplasmic actin networks are thought to have important roles in mechanical support, myofibrillogenesis, and ion channel function. However, subcellular localization of cytoplasmic actin isoforms and proteins involved in the modulation of the cytoplasmic actin networks are elusive. Mena and VASP are important regulators of actin dynamics. Due to the lethal phenotype of mice with combined deficiency in Mena and VASP, however, distinct cardiac roles of the proteins remain speculative. In the present study, we analyzed the physiological functions of Mena and VASP in the heart and also investigated the role of the proteins in the organization of cytoplasmic actin networks. RESULTS: We generated a mouse model, which simultaneously lacks Mena and VASP in the heart. Mena/VASP double-deficiency induced dilated cardiomyopathy and conduction abnormalities. In wild-type mice, Mena and VASP specifically interacted with a distinct αII-Spectrin splice variant (SH3i), which is in cardiomyocytes exclusively localized at Z- and intercalated discs. At Z- and intercalated discs, Mena and β-actin localized to the edges of the sarcomeres, where the thin filaments are anchored. In Mena/VASP double-deficient mice, β-actin networks were disrupted and the integrity of Z- and intercalated discs was markedly impaired. CONCLUSIONS: Together, our data suggest that Mena, VASP, and αII-Spectrin assemble cardiac multi-protein complexes, which regulate cytoplasmic actin networks. Conversely, Mena/VASP deficiency results in disrupted β-actin assembly, Z- and intercalated disc malformation, and induces dilated cardiomyopathy and conduction abnormalities

    Further constraints on electron acceleration in solar noise storms

    Full text link
    We reexamine the energetics of nonthermal electron acceleration in solar noise storms. A new result is obtained for the minimum nonthermal electron number density required to produce a Langmuir wave population of sufficient intensity to power the noise storm emission. We combine this constraint with the stochastic electron acceleration formalism developed by Subramanian & Becker (2005) to derive a rigorous estimate for the efficiency of the overall noise storm emission process, beginning with nonthermal electron acceleration and culminating in the observed radiation. We also calculate separate efficiencies for the electron acceleration -- Langmuir wave generation stage and the Langmuir wave -- noise storm production stage. In addition, we obtain a new theoretical estimate for the energy density of the Langmuir waves in noise storm continuum sources.Comment: Accepted for publication in Solar Physic

    Neuroactive steroid effects on autophagy in a human embryonic kidney 293 (HEK) cell model

    Get PDF
    Neuropsychiatric and neurodegenerative disorders are correlated with cellular stress. Macroautophagy (autophagy) may represent an important protective pathway to maintain cellular homeostasis and functionality, as it targets cytoplasmic components to lysosomes for degradation and recycling. Given recent evidence that some novel psychiatric treatments, such as the neuroactive steroid (NAS) allopregnanolone (AlloP, brexanolone), may induce autophagy, we stably transfected human embryonic kidney 293 (HEK) cells with a ratiometric fluorescent probe to assay NAS effects on autophagy. We hypothesized that NAS may modulate autophagy in part by the ability of uncharged NAS to readily permeate membranes. Microscopy revealed a weak effect of AlloP on autophagic flux compared with the positive control treatment of Torin1. In high-throughput microplate experiments, we found that autophagy induction was more robust in early passages of HEK cells. Despite limiting studies to early passages for maximum sensitivity, a range of NAS structures failed to reliably induce autophagy or interact with Torin1 or starvation effects. To probe NAS in a system where AlloP effects have been shown previously, we surveyed astrocytes and again saw minimal autophagy induction by AlloP. Combined with other published results, our results suggest that NAS may modulate autophagy in a cell-specific or context-specific manner. Although there is merit to cell lines as a screening tool, future studies may require assaying NAS in cells from brain regions involved in neuropsychiatric disorders

    Tectonic collision and uplift of Wallacea triggered the global songbird radiation

    Get PDF
    Songbirds (oscine passerines) are the most species-rich and cosmopolitan bird group, comprising almost half of global avian diversity. Songbirds originated in Australia, but the evolutionary trajectory from a single species in an isolated continent to worldwide proliferation is poorly understood. Here, we combine the first comprehensive genome-scale DNA sequence data set for songbirds, fossil-based time calibrations, and geologically informed biogeographic reconstructions to provide a well-supported evolutionary hypothesis for the group. We show that songbird diversification began in the Oligocene, but accelerated in the early Miocene, at approximately half the age of most previous estimates. This burst of diversification occurred coincident with extensive island formation in Wallacea, which provided the first dispersal corridor out of Australia, and resulted in independent waves of songbird expansion through Asia to the rest of the globe. Our results reconcile songbird evolution with Earth history and link a major radiation of terrestrial biodiversity to early diversification within an isolated Australian continent

    Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records

    Get PDF
    The most powerful explosions on the Sun [...] drive the most severe space-weather storms. Proxy records of flare energies based on SEPs in principle may offer the longest time base to study infrequent large events. We conclude that one suggested proxy, nitrate concentrations in polar ice cores, does not map reliably to SEP events. Concentrations of select radionuclides measured in natural archives may prove useful in extending the time interval of direct observations up to ten millennia, but as their calibration to solar flare fluences depends on multiple poorly known properties and processes, these proxies cannot presently be used to help determine the flare energy frequency distribution. Being thus limited to the use of direct flare observations, we evaluate the probabilities of large-energy solar explosions by combining solar flare observations with an ensemble of stellar flare observations. We conclude that solar flare energies form a relatively smooth distribution from small events to large flares, while flares on magnetically-active, young Sun-like stars have energies and frequencies markedly in excess of strong solar flares, even after an empirical scaling with the mean activity level of these stars. In order to empirically quantify the frequency of uncommonly large solar flares extensive surveys of stars of near-solar age need to be obtained, such as is feasible with the Kepler satellite. Because the likelihood of flares larger than approximately X30 remains empirically unconstrained, we present indirect arguments, based on records of sunspots and on statistical arguments, that solar flares in the past four centuries have likely not substantially exceeded the level of the largest flares observed in the space era, and that there is at most about a 10% chance of a flare larger than about X30 in the next 30 years.Comment: 14 pages, 3 figures (in press as of 2012/06/18); Journal of Geophysical Research (Space Physics), 201

    Synergies for Improving Oil Palm Production and Forest Conservation in Floodplain Landscapes

    Get PDF
    Lowland tropical forests are increasingly threatened with conversion to oil palm as global demand and high profit drives crop expansion throughout the world’s tropical regions. Yet, landscapes are not homogeneous and regional constraints dictate land suitability for this crop. We conducted a regional study to investigate spatial and economic components of forest conversion to oil palm within a tropical floodplain in the Lower Kinabatangan, Sabah, Malaysian Borneo. The Kinabatangan ecosystem harbours significant biodiversity with globally threatened species but has suffered forest loss and fragmentation. We mapped the oil palm and forested landscapes (using object-based-image analysis, classification and regression tree analysis and on-screen digitising of high-resolution imagery) and undertook economic modelling. Within the study region (520,269 ha), 250,617 ha is cultivated with oil palm with 77% having high Net-Present-Value (NPV) estimates (413/ha?yr–413/ha?yr–637/ha?yr); but 20.5% is under-producing. In fact 6.3% (15,810 ha) of oil palm is commercially redundant (with negative NPV of −299/ha?yr−-299/ha?yr--65/ha?yr) due to palm mortality from flood inundation. These areas would have been important riparian or flooded forest types. Moreover, 30,173 ha of unprotected forest remain and despite its value for connectivity and biodiversity 64% is allocated for future oil palm. However, we estimate that at minimum 54% of these forests are unsuitable for this crop due to inundation events. If conversion to oil palm occurs, we predict a further 16,207 ha will become commercially redundant. This means that over 32,000 ha of forest within the floodplain would have been converted for little or no financial gain yet with significant cost to the ecosystem. Our findings have globally relevant implications for similar floodplain landscapes undergoing forest transformation to agriculture such as oil palm. Understanding landscape level constraints to this crop, and transferring these into policy and practice, may provide conservation and economic opportunities within these seemingly high opportunity cost landscapes

    Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data

    Get PDF
    Background. Remotely-sensed environmental data from earth-orbiting satellites are increasingly used to model the distribution and abundance of both plant and animal species, especially those of economic or conservation importance. Time series of data from the MODerate-resolution Imaging Spectroradiometer (MODIS) sensors on-board NASA's Terra and Aqua satellites offer the potential to capture environmental thermal and vegetation seasonality, through temporal Fourier analysis, more accurately than was previously possible using the NOAA Advanced Very High Resolution Radiometer (AVHRR) sensor data. MODIS data are composited over 8- or 16-day time intervals that pose unique problems for temporal Fourier analysis. Applying standard techniques to MODIS data can introduce errors of up to 30% in the estimation of the amplitudes and phases of the Fourier harmonics. Methodology/Principal Findings. We present a novel spline-based algorithm that overcomes the processing problems of composited MODIS data. The algorithm is tested on artificial data generated using randomly selected values of both amplitudes and phases, and provides an accurate estimate of the input variables under all conditions. The algorithm was then applied to produce layers that capture the seasonality in MODIS data for the period from 2001 to 2005. Conclusions/Significance. Global temporal Fourier processed images of 1 km MODIS data for Middle Infrared Reflectance, day- and night-time Land Surface Temperature (LST), Normalised Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI) are presented for ecological and epidemiological applications. The finer spatial and temporal resolution, combined with the greater geolocational and spectral accuracy of the MODIS instruments, compared with previous multi-temporal data sets, mean that these data may be used with greater confidence in species' distribution modelling
    • …
    corecore