We reexamine the energetics of nonthermal electron acceleration in solar
noise storms. A new result is obtained for the minimum nonthermal electron
number density required to produce a Langmuir wave population of sufficient
intensity to power the noise storm emission. We combine this constraint with
the stochastic electron acceleration formalism developed by Subramanian &
Becker (2005) to derive a rigorous estimate for the efficiency of the overall
noise storm emission process, beginning with nonthermal electron acceleration
and culminating in the observed radiation. We also calculate separate
efficiencies for the electron acceleration -- Langmuir wave generation stage
and the Langmuir wave -- noise storm production stage. In addition, we obtain a
new theoretical estimate for the energy density of the Langmuir waves in noise
storm continuum sources.Comment: Accepted for publication in Solar Physic