200 research outputs found

    Double-lepton polarization asymmetries in the (B -> K l^+ l^-) decay beyond the Standard Model

    Full text link
    General expressions for the double-lepton polarizations in the (B -> K l^+ l^-) decay are obtained, using model independent effective Hamiltonian, including all possible interactions. Correlations between the averaged double-lepton polarization asymmetries and the branching ratio, as well as, the averaged single-lepton polarization asymmetry are studied. It is observed that, study of the double-lepton polarization asymmetries can serve as a good test for establishing new physics beyond the Standard Model.Comment: 21 pages, 18 figures, LaTeX formatte

    A theory of normed simulations

    Get PDF
    In existing simulation proof techniques, a single step in a lower-level specification may be simulated by an extended execution fragment in a higher-level one. As a result, it is cumbersome to mechanize these techniques using general purpose theorem provers. Moreover, it is undecidable whether a given relation is a simulation, even if tautology checking is decidable for the underlying specification logic. This paper introduces various types of normed simulations. In a normed simulation, each step in a lower-level specification can be simulated by at most one step in the higher-level one, for any related pair of states. In earlier work we demonstrated that normed simulations are quite useful as a vehicle for the formalization of refinement proofs via theorem provers. Here we show that normed simulations also have pleasant theoretical properties: (1) under some reasonable assumptions, it is decidable whether a given relation is a normed forward simulation, provided tautology checking is decidable for the underlying logic; (2) at the semantic level, normed forward and backward simulations together form a complete proof method for establishing behavior inclusion, provided that the higher-level specification has finite invisible nondeterminism.Comment: 31 pages, 10figure

    Optical performance of the JWST MIRI flight model: characterization of the point spread function at high-resolution

    Get PDF
    The Mid Infra Red Instrument (MIRI) is one of the four instruments onboard the James Webb Space Telescope (JWST), providing imaging, coronagraphy and spectroscopy over the 5-28 microns band. To verify the optical performance of the instrument, extensive tests were performed at CEA on the flight model (FM) of the Mid-InfraRed IMager (MIRIM) at cryogenic temperatures and in the infrared. This paper reports on the point spread function (PSF) measurements at 5.6 microns, the shortest operating wavelength for imaging. At 5.6 microns the PSF is not Nyquist-sampled, so we use am original technique that combines a microscanning measurement strategy with a deconvolution algorithm to obtain an over-resolved MIRIM PSF. The microscanning consists in a sub-pixel scan of a point source on the focal plane. A data inversion method is used to reconstruct PSF images that are over-resolved by a factor of 7 compared to the native resolution of MIRI. We show that the FWHM of the high-resolution PSFs were 5-10% wider than that obtained with Zemax simulations. The main cause was identified as an out-of-specification tilt of the M4 mirror. After correction, two additional test campaigns were carried out, and we show that the shape of the PSF is conform to expectations. The FWHM of the PSFs are 0.18-0.20 arcsec, in agreement with simulations. 56.1-59.2% of the total encircled energy (normalized to a 5 arcsec radius) is contained within the first dark Airy ring, over the whole field of view. At longer wavelengths (7.7-25.5 microns), this percentage is 57-68%. MIRIM is thus compliant with the optical quality requirements. This characterization of the MIRIM PSF, as well as the deconvolution method presented here, are of particular importance, not only for the verification of the optical quality and the MIRI calibration, but also for scientific applications.Comment: 13 pages, submitted to SPIE Proceedings vol. 7731, Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wav

    Rigorous System Design: The BIP Approach

    Get PDF
    Rigorous system design requires the use of a single powerful component framework allowing the representation of the designed system at different levels of detail, from application software to its implementation. This is essential for ensuring the overall coherency and correctness. The paper introduces a rigorous design flow based on the BIP (Behavior, Interaction, Priority) component framework. This design flow relies on several, tool-supported, source-to-source transformations allowing to progressively and correctly transform high level application software towards efficient implementations for specific platforms

    A new CP violating observable for the LHC

    Full text link
    We study a new type of CP violating observable that arises in three body decays that are dominated by an intermediate resonance. If two interfering diagrams exist with different orderings of final state particles, the required CP-even phase arises due to the different virtualities of the resonance in each of the two diagrams. This method can be an important tool for accessing new CP phases at the LHC and future colliders.Comment: 22 pages, v2: discussion of charged particle decays and a few references added v3: typos corrected, matches published versio

    Polarized forward-backward asymmetries of leptons in (B_s -> l^+ l^- gamma) decay

    Full text link
    Polarized forward-backward asymmetries in the (B_s -> l^+ l^- gamma) decay are calculated using the most general, model independent form of the effective Hamiltonian, including all possible forms of interactions. The dependencies of the asymmetries on new Wilson coefficients are investigated. The detectability of the asymmetries at LHC is discussed.Comment: 26 pages, 22 figures, LaTeX formatte

    Polya's inequalities, global uniform integrability and the size of plurisubharmonic lemniscates

    Full text link
    First we prove a new inequality comparing uniformly the relative volume of a Borel subset with respect to any given complex euclidean ball \B \sub \C^n with its relative logarithmic capacity in \C^n with respect to the same ball \B. An analoguous comparison inequality for Borel subsets of euclidean balls of any generic real subspace of \C^n is also proved. Then we give several interesting applications of these inequalities. First we obtain sharp uniform estimates on the relative size of \psh lemniscates associated to the Lelong class of \psh functions of logarithmic singularities at infinity on \C^n as well as the Cegrell class of \psh functions of bounded Monge-Amp\`ere mass on a hyperconvex domain \W \Sub \C^n. Then we also deduce new results on the global behaviour of both the Lelong class and the Cegrell class of \psh functions.Comment: 25 page

    Analysis of Various Polarization Asymmetries In The Inclusive b→sℓ+ℓ−b\to s \ell^+ \ell^- Decay In The Fourth-Generation Standard Model

    Get PDF
    In this study a systematical analysis of various polarization asymmetries in inclusive b \rar s \ell^+ \ell^- decay in the standard model (SM) with four generation of quarks is carried out. We found that the various asymmetries are sensitive to the new mixing and quark masses for both of the ÎŒ\mu and τ\tau channels. Sizeable deviations from the SM values are obtained. Hence, b \rar s \ell^+ \ell^- decay is a valuable tool for searching physics beyond the SM, especially in the indirect searches for the fourth-generation of quarks (tâ€Č,bâ€Č)t', b').Comment: 19 Pages, 10 Figures, 3 Table

    Momentum asymmetries as CP violating observables

    Full text link
    Three body decays can exhibit CP violation that arises from interfering diagrams with different orderings of the final state particles. We construct several momentum asymmetry observables that are accessible in a hadron collider environment where some of the final state particles are not reconstructed and not all the kinematic information can be extracted. We discuss the complications that arise from the different possible production mechanisms of the decaying particle. Examples involving heavy neutralino decays in supersymmetric theories and heavy Majorana neutrino decays in Type-I seesaw models are examined.Comment: 20 pages, 9 figures. Clarifying comments and one reference added, matches published versio

    Double-lepton polarization asymmetries in Lambda_b -> Lambda l^+ l^- decay

    Full text link
    Double-lepton polarization asymmetries in (Lambda_b -> Lambda l^+ l^-) decay are calculated using a general, model independent form of the effective Hamiltonian. The sensitivities of these asymmetries to the new Wilson coefficients are studied in detail. Furthermore, the correlations between averaged double-lepton polarization asymmetry and branching ratio are analyzed. It is shown that there exist certain regions of the new Wilson coefficients where new physics can be established by measuring the double-lepton polarization asymmetries only.Comment: 26 pages, 12 figures, LaTeX formatte
    • 

    corecore