248 research outputs found

    Probing the concept of line tension down to the nanoscale

    Full text link
    A novel mechanical approach is developed to explore by means of atom-scale simulation the concept of line tension at a solid-liquid-vapor contact line as well as its dependence on temperature, confinement, and solid/fluid interactions. More precisely, by estimating the stresses exerted along and normal to a straight contact line formed within a partially wet pore, the line tension can be estimated while avoiding the pitfalls inherent to the geometrical scaling methodology based on hemispherical drops. The line tension for Lennard-Jones fluids is found to follow a generic behavior with temperature and chemical potential effects that are all included in a simple contact angle parameterization. Former discrepancies between theoretical modeling and molecular simulation are resolved, and the line tension concept is shown to be robust down to molecular confinements. The same qualitative behavior is observed for water but the line tension at the wetting transition diverges or converges towards a finite value depending on the range of the solid/fluid interactions at play.Comment: 8 pages, 7 figure

    On The Joint Modeling of The Behavior of Social Insects and Their Interaction With Environment by Taking Into Account Physical Phenomena Like Anisotropic Diffusion

    Get PDF
    International audienceThis work takes place in the framework of GEODIFF project (funded by CNRS) and deals with the general issue of the social behavior modeling of pest insects with a particular focus on Bark Beetles. Bark Beetles are responsible for pine trees devastation in North America since 2005. In order to stem the problem and to apply an adapted strategy, one should be able to predict the evolution of the population of Bark Beetles. More precisely, a model taking into account a given population of insects (a colony) interacting with its environment, the forest ecosystem, would be very helpful. In a previous work, we aimed to model diffusive phenomenons across the environment using a simple reactive Multi-agent System. Bark beetle use pheromones as a support for recruitment of other bark beetles in the neighborhood in order to achieve a mass attack over a tree. They are first attracted by the ethanol or other phytopheromones emitted by a sick, stressed or dead tree and reinforce the presence of other individuals amongst the targeted tree. Both ethanol and semiochemicals are transported through the forest thanks to the wind, thermic effects and this advection phenomenon is modulated by the topology of the environment, tree and other obstacles distribution. In other words, the environment is involved in the process of a bark beetle attack. The first modeling we used to tackle our objective was not spatially explicit as long as free space propagation only was taken into account (isotropic phenomenon) with no constraint imposed by the environment such as wind. This article is intended to take into account such physical phenomenons and push the modeling one step further by providing predictions driven by measures provided by a Geographical Information System

    On The Joint Modeling of The Behavior of Social Insects and Their Interaction With Environment by Taking Into Account Physical Phenomena Like Anisotropic Diffusion

    Get PDF
    This work takes place in the framework of GEODIFF project (funded by CNRS) and deals with the general issue of the social behavior modeling of pest insects with a particular focus on Bark Beetles. Bark Beetles are responsible for pine trees devastation in North America since 2005. In order to stem the problem and to apply an adapted strategy, one should be able to predict the evolution of the population of Bark Beetles. More precisely, a model taking into account a given population of insects (a colony) interacting with its environment, the forest ecosystem, would be very helpful. In a previous work, we aimed to model diffusive phenomenons across the environment using a simple reactive Multi-agent System. Bark beetle use pheromones as a support for recruitment of other bark beetles in the neighborhood in order to achieve a mass attack over a tree. They are first attracted by the ethanol or other phytopheromones emitted by a sick, stressed or dead tree and reinforce the presence of other individuals amongst the targeted tree. Both ethanol and semiochemicals are transported through the forest thanks to the wind, thermic effects and this advection phenomenon is modulated by the topology of the environment, tree and other obstacles distribution. In other words, the environment is involved in the process of a bark beetle attack. The first modeling we used to tackle our objective was not spatially explicit as long as free space propagation only was taken into account (isotropic phenomenon) with no constraint imposed by the environment such as wind. This article is intended to take into account such physical phenomenons and push the modeling one step further by providing predictions driven by measures provided by a Geographical Information System

    Dissolution–precipitation processes governing the carbonation and silicification of the serpentinite sole of the New Caledonia ophiolite

    Get PDF
    International audienceThe weathering of mantle peridotite tectoni-cally exposed to the atmosphere leads commonly to natural carbonation processes. Extensive cryptocrystalline mag-nesite veins and stock-work are widespread in the ser-pentinite sole of the New Caledonia ophiolite. Silica is systematically associated with magnesite. It is commonly admitted that Mg and Si are released during the laterization of overlying peridotites. Thus, the occurrence of these veins is generally attributed to a per descensum mechanism that involves the infiltration of meteoric waters enriched in dissolved atmospheric CO 2. In this study, we investigate serpentinite carbonation processes, and related silicifica-tion, based on a detailed petrographic and crystal chemical study of serpentinites. The relationships between serpen-tine and alteration products are described using an original method for the analysis of micro-X-ray fluorescence images performed at the centimeter scale. Our investigations highlight a carbonation mechanism, together with precipitation of amorphous silica and sepiolite, based on a dis-solution–precipitation process. In contrast with the per descensum Mg/Si-enrichment model that is mainly concentrated in rock fractures, dissolution–precipitation process is much more pervasive. Thus, although the texture of rocks remains relatively preserved, this process extends more widely into the rock and may represent a major part of total carbonation of the ophiolite

    Near-field spectroscopy of low-loss waveguide integrated microcavities

    Get PDF
    International audienceA scanning near-field spectroscopy method is used to observe loss reduction and Q-factor enhancement due to transverse-mode profile matching within photonic-crystal microcavities. Near-field measurements performed directly on cavity modes are compared with three-dimensional calculations and quantitative agreement is observed. (c) 2006 American Institute of Physics

    Early-Stage Contactin-Associated Protein-like 2 Limbic Encephalitis: Clues for Diagnosis

    Get PDF
    BACKGROUND AND OBJECTIVES: Previous studies suggested that autoimmune limbic encephalitis with antibodies against contactin-associated protein-like 2 (CASPR2-encephalitis) is clinically heterogeneous and progresses slowly, preventing its early recognition. We aimed to describe the onset and progression of CASPR2-encephalitis and to assess long-term outcomes. METHODS: We retrospectively analyzed the medical records of all patients whose CSF tested positive for anti-CASPR2 antibodies in our center between 2006 and 2020. Standardized telephone interviews of all available patients and relatives were conducted, assessing long-term functional independence using the Functional Activity Questionnaire (FAQ) and quality of life using the 36-Item Short-Form Survey (SF36). RESULTS: Forty-eight patients were included (98% males; median age 64 years), and 35 participated in telephone interviews (73%). At onset, 81% had at least 1 neurologic symptom among the following: limbic (54%), peripheral nerve hyperexcitability (PNH; 21%), and/or cerebellar symptoms (17%). Most of the patients (75%) had initially symptoms of only one of these categories. Limbic symptoms at onset included mostly seizures (33%), while memory disturbances were less frequent (10%). PNH signs were mostly neuropathic pain (9/10 patients). Other symptoms seen at onset included asthenia (33%), mood disorders (25%), and insomnia (21%); 19% of patients did not show any limbic, peripheral, or cerebellar symptom at onset but only asthenia (15%), mood disorders (6%), weight loss (8%), dysautonomia (4%), and/or insomnia (2%). The peak of the disease was attained in median 16.7 months after onset. Over the study period (median follow-up, 58.8 months, range 10.6-189.1), 77% of patients developed ≄3 core CASPR2 symptoms and 42% fulfilled the diagnostic criteria for autoimmune limbic encephalitis, although all patients ultimately developed limbic symptoms. At the last visit, most interviewed patients (28/35 patients, 80%; median, 5 years after onset) had recovered functional independence (FAQ <9) while only the vitality subscore of the SF36 was lower than normative data (mean 49.9 vs 58.0, p = 0.0369). DISCUSSION: CASPR2-encephalitis has a progressive course and is highly heterogeneous at the early stage. In men older than 50 years, otherwise unexplained seizures, cerebellar ataxia, and/or neuropathic pain are suggestive of early-stage CASPR2-encephalitis, especially if they coincide with recent asthenia, mood disorders, or insomnia

    Photonics at nanometer scale: tracking light in high Q low V nanocavities

    Get PDF
    Photonic crystals (PCs) have proven to be an efficient way to tightly confine the electromagnetic field in nanocavities or slow down light propagation within optical waveguides. Very recently it has been proposed to use a nanometric optical probe to observe in near-field the light confinement and propagation within PC devices. In this work we analyze the optical properties of PC nanostructures by using a SNOM probe in collection mode in association with transmission measurements. We also explore the possibility to use the nanometric tip for a new class of Near-field Optics Nanometric Silicon Systems (NONSS) dedicated to on-chip information routing and processing. In a first step, we show that with to the SNOM probe it is possible to evidence different light behaviours depending on optical mode profile. Mode coupling in PC waveguides and quality factor changes in PC nanocavities will be discussed. Then in a second step, we show that strong field confinement enhancement can be achieved in nanocavities by proper mirror designs including mode matching and losses recycling. A quality factor (Q) enhancement by two orders of magnitude is observed. These experimental results are discussed in light of numerical calculations. Finally, in a third step, we fabricated a nanocavity in a monomode SOI ridge waveguide with an ultimately low microcavity modal volume of 0.6(l/n)^3. We use this high-Q low-V nanocavity to explore the nanocavity - nanometric optical probe interaction

    Two cilengitide regimens in combination with standard treatment for patients with newly diagnosed glioblastoma and unmethylated MGMT gene promoter: results of the open-label, controlled, randomized phase II CORE study

    Get PDF
    Background Survival outcomes for patients with glioblastoma remain poor, particularly for patients with unmethylated O6-methylguanine-DNA methyltransferase (MGMT) gene promoter. This phase II, randomized, open-label, multicenter trial investigated the efficacy and safety of 2 dose regimens of the selective integrin inhibitor cilengitide combined with standard chemoradiotherapy in patients with newly diagnosed glioblastoma and an unmethylated MGMT promoter. Methods Overall, 265 patients were randomized (1:1:1) to standard cilengitide (2000 mg 2×/wk; n = 88), intensive cilengitide (2000 mg 5×/wk during wk 1−6, thereafter 2×/wk; n = 88), or a control arm (chemoradiotherapy alone; n = 89). Cilengitide was administered intravenously in combination with daily temozolomide (TMZ) and concomitant radiotherapy (RT; wk 1−6), followed by TMZ maintenance therapy (TMZ/RT→TMZ). The primary endpoint was overall survival; secondary endpoints included progression-free survival, pharmacokinetics, and safety and tolerability. Results Median overall survival was 16.3 months in the standard cilengitide arm (hazard ratio [HR], 0.686; 95% CI: 0.484, 0.972; P = .032) and 14.5 months in the intensive cilengitide arm (HR, 0.858; 95% CI: 0.612, 1.204; P = .3771) versus 13.4 months in the control arm. Median progression-free survival assessed per independent review committee was 5.6 months (HR, 0.822; 95% CI: 0.595, 1.134) and 5.9 months (HR, 0.794; 95% CI: 0.575, 1.096) in the standard and intensive cilengitide arms, respectively, versus 4.1 months in the control arm. Cilengitide was well tolerated. Conclusions Standard and intensive cilengitide dose regimens were well tolerated in combination with TMZ/RT→TMZ. Inconsistent overall survival and progression-free survival outcomes and a limited sample size did not allow firm conclusions regarding clinical efficacy in this exploratory phase II stud

    Phenotypic and Molecular Characterization of Brucella microti-Like Bacteria From a Domestic Marsh Frog (Pelophylax ridibundus)

    Get PDF
    Several Brucella isolates have been described in wild-caught and “exotic” amphibians from various continents and identified as B. inopinata-like strains. On the basis of epidemiological investigations conducted in June 2017 in France in a farm producing domestic frogs (Pelophylax ridibundus) for human consumption of frog's legs, potentially pathogenic bacteria were isolated from adults showing lesions (joint and subcutaneous abscesses). The bacteria were initially misidentified as Ochrobactrum anthropi using a commercial identification system, prior to being identified as Brucella spp. by MALDI-TOF assay. Classical phenotypic identification confirmed the Brucella genus, but did not make it possible to conclude unequivocally on species determination. Conventional and innovative bacteriological and molecular methods concluded that the investigated strain was very close to B. microti species, and not B. inopinata-like strains, as expected. The methods included growth kinetic, antimicrobial susceptibility testing, RT-PCR, Bruce-Ladder, Suis-Ladder, RFLP-PCR, AMOS-ERY, MLVA-16, the ectoine system, 16S rRNA and recA sequence analyses, the LPS pattern, in silico MLST-21, comparative whole-genome analyses (including average nucleotide identity ANI and whole-genome SNP analysis) and HRM-PCR assays. Minor polyphasic discrepancies, especially phage lysis and A-dominant agglutination patterns, as well as, small molecular divergences suggest the investigated strain should be considered a B. microti-like strain, raising concerns about its environmental persistence and unknown animal pathogenic and zoonotic potential as for other B. microti strains described to date
    • 

    corecore