220 research outputs found

    Assessing glacier retreat and landform production at the ‘debris-charged’ snout of Kvíárjökull, Iceland

    Get PDF
    Iceland is a critical location for the study of glacier fluctuations and landform production in response to climate change due to its diverse glacial legacy and its archive of aerial photographs that provide accurately dated records of glacier retreat and landform evolution from 1945. This study focuses on Kvíárjökull, an outlet glacier of the Öræfajökull ice cap in southeast Iceland, recently classified as a ‘debris-charged glacier landsystem’. Digital photogrammetry was applied on five sets of aerial photographs from 1945 to 2003 in order to produce Digital Elevation Models from which measurements of morphometric change within the glacier snout and foreland were made. This analysis was combined with field assessments and geomorphological mapping to investigate the evolution of landforms from complex debris transport pathways and the impact of ice marginal dynamics on moraine evolution. The temporal pattern of retreat of Kvíárjökull correlates with fluctuations in air temperature with a lag of about 10 years compared to other Icelandic glaciers. Ice-marginal pushing during lateral fluctuations of the snout results in the construction of push moraine ridges and the destruction of controlled moraine derived from englacial debris concentrations. Accelerated snout retreat between 1998 and 2003 exceeded the rate of increase in air temperature and is attributed to the growth of proglacial and supraglacial lakes associated with high rates of backwasting. Backwasting of ice cores consumes ridges of high relief, thus, reducing the preservation of controlled moraine ridges. A model for the de-icing of ice-cored moraines is presented in which ice-cores remain in the landscape for up to 83 years after detachment from the glacier snout. A debris-charged glacier landsystem model is presented in which hummocky moraine complexes comprise three process-sediment-landform associations: chaotic hummocky moraine, with minor elements of linearity resulting from the stagnation of controlled moraine; heavily channelized moraine complexes; and, most prevalent, discontinuous push moraine ridges formed during ice-marginal pushing. A time series of five 1:10,000 geomorphological maps illustrates the evolution of this landsystem and provides an unprecedented record of cryospheric change

    Landslides, threshold slopes and the survival of relict terrain in the wake of the Mendocino Triple Junction

    Get PDF
    Establishing landscape response to uplift is critical for interpreting sediment fluxes, hazard potential, and topographic evolution. We assess how landslides shape terrain in response to a wave of uplift traversing the northern California Coast Ranges (United States) in the wake of the Mendocino Triple Junction. We extracted knickpoints, landslide erosion rates, and topographic metrics across the region modified by Mendocino Triple Junction migration. Landslide erosion rates mapped from aerial imagery are consistent with modeled uplift and exhumation, while hillslope gradient is invariant across the region, suggesting that landslides accommodate uplift, as predicted by the threshold slope model. Landslides are concentrated along steepened channel reaches downstream of knickpoints generated by base-level fall at channel outlets, and limit slope angles and relief. We find evidence that landslide-derived coarse sediment delivery may suppress catchment-wide channel incision and landscape denudation over the time required for the uplift wave to traverse the region. We conclude that a landslide cover effect may provide a mechanism for the survival of relict terrain and orogenic relief in the northern Californian Coast Ranges and elsewhere over millennial time scales

    Boulders as a Lithologic Control on River and Landscape Response to Tectonic Forcing at the Mendocino Triple Junction

    Get PDF
    Constraining Earth’s sediment mass balance over geologic time requires a quantitative understanding of how landscapes respond to transient tectonic perturbations. However, the mechanisms by which bedrock lithology governs landscape response remain poorly understood. Rock type influences the size of sediment delivered to river channels, which controls how efficiently rivers respond to tectonic forcing. The Mendocino triple junction region of northern California, USA, is one landscape in which large boulders, delivered by hillslope failures to channels, may alter the pace of landscape response to a pulse of rock uplift. Boulders frequently delivered by earthflows in one lithology, the Franciscan mélange, have been hypothesized to steepen channels and slow river response to rock uplift, helping to preserve high-elevation, low-relief topography. Channels in other units (the Coastal Belt and the Franciscan schist) may experience little or no erosion inhibition due to boulder delivery. Here we investigate spatial patterns in channel steepness, an indicator of erosion resistance, and how it varies between mélange and non-mélange channels. We then ask whether lithologically controlled boulder delivery to rivers is a possible cause of steepness variations. We find that mélange channels are steeper than Coastal Belt channels but not steeper than schist channels. Though channels in all units steepen with increasing proximity to mapped hillslope failures, absolute steepness values near failures are much higher (∼2×) in the mélange and schist than in Coastal Belt units. This could reflect reduced rock erodibility or increased erosion rates in the mélange and schist, or disproportionate steepening due to enhanced boulder delivery by hillslope failures in those units. To investigate the possible influence of lithology-dependent boulder delivery, we map boulders at failure toes in the three units. We find that boulder size, frequency, and concentration are greatest in mélange channels and that Coastal Belt channels have the lowest concentrations. Using our field data to parameterize a mathematical model for channel slope response to boulder delivery, we find that the modeled influence of boulders in the mélange could be strong enough to account for some observed differences in channel steepness between lithologies. At the landscape scale, we lack the data to fully disentangle boulder-induced steepening from that due to spatially varying erosion rates and in situ rock erodibility. However, our boulder mapping and modeling results suggest that lithology-dependent boulder delivery to channels could retard landscape adjustment to tectonic forcing in the mélange and potentially also in the schist. Boulder delivery may modulate landscape response to tectonics and help preserve high-elevation, low-relief topography at the Mendocino triple junction and elsewhere

    Widespread initiation, reactivation, and acceleration of landslides in the northern California Coast Ranges due to extreme rainfall

    Get PDF
    Episodically to continuously active slow‐moving landslides are driven by precipitation. Climate change, which is altering both the frequency and magnitude of precipitation worldwide, is therefore predicted to have a major impact on landslides. Here we examine the behavior of hundreds of slow‐moving landslides in northern California in response to large changes in annual precipitation that occurred between 2016 and 2018. We quantify the landslide displacement using repeat‐pass radar interferometry and pixel offset tracking techniques on a novel dataset from the airborne NASA/JPL Uninhabited Aerial Vehicle Synthetic Aperture Radar. We found that 312 landslides were moving due to extreme rainfall during 2017, compared to 119 during 2016, which was the final year of a historic multi‐year drought. However, with a return to below‐average rainfall in 2018, only 146 landslides remained in motion. The increased number of landslides during 2017 was primarily accommodated by landslides that were smaller than the landslides that remained active between 2016 and 2018. Furthermore, by examining a subset of 51 landslides, we found that 49 had increased velocities during 2017 when compared to 2016. Our results show that slow‐moving landslides are sensitive to large changes in annual precipitation, particularly the smaller and thinner landslides that likely experience larger basal pore‐water pressure changes. Based on climate model predictions for the next century in California, which include increases in average annual precipitation and increases in the frequency of dry‐to‐wet extremes, we hypothesize that there will be an overall increase in landslide activity

    Multi-event assessment of typhoon-triggered landslide susceptibility in the Philippines

    Full text link
    There is a clear need to improve and update landslide susceptibility models across the Philippines. This is challenging, as landslides in this region are frequently triggered by temporally and spatially disparate typhoon events, and it remains unclear whether such spatially and/or temporally distinct typhoon events cause similar landslide responses, i.e. whether the landslide susceptibility for one typhoon event is similar for another. Here, we use logistic regression to develop four landslide susceptibility models based on three typhoon-triggered landslide inventories for the 2009 Typhoon Parma (local name Typhoon Pepeng), the 2018 Typhoon Mangkhut (local name Typhoon Ompong), and the 2019 Typhoon Kammuri (local name Typhoon Tisoy)

    Beyond the angle of repose: A review and synthesis of landslide processes in response to rapid uplift, Eel River, Northern California

    Get PDF
    In mountainous settings, increases in rock uplift are often followed by a commensurate uptick in denudation as rivers incise and steepen hillslopes, making them increasingly prone to landsliding as slope angles approach a limiting value. For decades, the threshold slope model has been invoked to account for landslide-driven increases in sediment flux that limit topographic relief, but the manner by which slope failures organize themselves spatially and temporally in order for erosion to keep pace with rock uplift has not been well documented. Here, we review past work and present new findings from remote sensing, cosmogenic radionuclides, suspended sediment records, and airborne lidar data, to decipher patterns of landslide activity and geomorphic processes related to rapid uplift along the northward-migrating Mendocino Triple Junction in Northern California. From historical air photos and airborne lidar, we estimated the velocity and sediment flux associated with active, slow-moving landslides (or earthflows) in the mélange- and argillite-dominated Eel River watershed using the downslope displacement of surface markers such as trees and shrubs. Although active landslides that directly convey sediment into the channel network account for only 7% of the landscape surface, their sediment flux amounts to more than 50% of the suspended load recorded at downstream sediment gaging stations. These active slides tend to exhibit seasonal variations in velocity as satellite-based interferometry has demonstrated that rapid acceleration commences within 1 to 2 months of the onset of autumn rainfall events before slower deceleration ensues in the spring and summer months. Curiously, this seasonal velocity pattern does not appear to vary with landslide size, suggesting that complex hydrologic–mechanical feedbacks (rather than 1-D pore pressure diffusion) may govern slide dynamics. A new analysis of 14 yrs of discharge and sediment concentration data for the Eel River indicates that the characteristic mid-winter timing of earthflow acceleration corresponds with increased suspended concentration values, suggesting that the seasonal onset of landslide motion each year may be reflected in the export of sediments to the continental margin. The vast majority of active slides exhibit gullied surfaces and the gully networks, which are also seasonally active, may facilitate sediment export although the proportion of material produced by this pathway is poorly known. Along Kekawaka Creek, a prominent tributary to the Eel River, new analyses of catchment-averaged erosion rates derived from cosmogenic radionuclides reveal rapid erosion (0.76 mm/yr) below a prominent knickpoint and slower erosion (0.29 mm/yr) upstream. Such knickpoints are frequently observed in Eel tributaries and are usually comprised of massive (> 10 m) interlocking resistant boulders that likely persist in the landscape for long periods of time (> 105 yr). Upstream of these knickpoints, active landslides tend to be less frequent and average slope angles are slightly gentler than in downstream areas, which indicates that landslide density and average slope angle appear to increase with erosion rate. Lastly, we synthesize evidence for the role of large, catastrophic landslides in regulating sediment flux and landscape form. The emergence of resistant blocks within the mélange bedrock has promoted large catastrophic slides that have dammed the Eel River and perhaps generated outburst events in the past. The frequency and impact of these landslide dams likely depend on the spatial and size distributions of resistant blocks relative to the width and drainage area of adjacent valley networks. Overall, our findings demonstrate that landslides within the Eel River catchment do not occur randomly, but instead exhibit spatial and temporal patterns related to baselevel lowering, climate forcing, and lithologic variations. Combined with recent landscape evolution models that incorporate landslides, these results provide predictive capability for estimating erosion rates and managing hazards in mountainous regions

    Anthropometric and Physiological Characteristics of Elite Male Rugby Athletes

    Get PDF
    This is the first article to review the anthropometric and physiological characteristics required for elite rugby performance within both Rugby Union (RU) and Rugby League (RL). Anthropometric characteristics such as height and mass, and physiological characteristics such as speed and muscular strength, have previously been advocated as key discriminators of playing level within rugby. This review aimed to identify the key anthropometric and physiological properties required for elite performance in rugby, distinguishing between RU and RL, forwards and backs and competitive levels. There are differences between competitive standards such that, at the elite level, athletes are heaviest (RU forwards ~111 kg, backs ~93 kg; RL forwards ~103 kg, backs ~90 kg) with lowest % body fat (RU forwards ~15%, backs ~12%; RL forwards ~14%, backs ~11%), they have most fat-free mass and are strongest (Back squat: RU forwards ~176 kg, backs ~157 kg; RL forwards ~188 kg, backs ~ 168 kg; Bench press: RU forwards ~131 kg, backs ~118 kg; RL forwards ~122 kg, backs ~113 kg) and fastest (10 m: RU forwards ~1.87 s, backs ~1.77 s; 10 m RL forwards ~1.9 s, backs ~1.83 s). We also have unpublished data that indicate contemporary RU athletes have less body fat and are stronger and faster than the published data suggest. Regardless, well-developed speed, agility, lower-body power and strength characteristics are vital for elite performance, probably reflect both environmental (training, diet, etc.) and genetic factors, distinguish between competitive levels and are therefore important determinants of elite status in rugby.Published versio

    Smart sensors to detect movements of cobbles and large woody debris dams. Insights from lab experiments.

    Get PDF
    An increase in population pressure and severe storms under climate change have greatly impacted landslide and flood hazards globally. At the same time, recent advances in Wireless Sensor Network (WSN) and Internet of Things (IoT) technologies, microelectronics and machine learning offer new opportunities to effectively monitor stability of boulder and woody debris on landslides and in flood-prone rivers. In this framework, smart sensors embedded in elements within the landslide body and the river catchment can be potentially used for monitoring purposes and for developing early warning systems. This is because they are small, light-weight, and able to collect different environmental data with low battery consumption and communicate to a server through a wireless connection. However, their reliability still needs to be evaluated. As data from field sites could be fragmented, laboratory experiments are essential to validate sensor data and see their potential in a controlled environment. In the present study, dedicated laboratory experiments were designed to assess the ability of a tag equipped with an accelerometer, a gyroscope, and a magnetometer to detect movements in two different settings. In the first experimental campaign, the tag was installed inside a cobble of 10.0 cm diameter within a borehole of 4.0 cm diameter. The experiments consisted in letting the cobble fall on an experimental table composed of an inclined plane of 1.5 m, followed by a horizontal one of 2.0 m. The inclined plane can be tilted at different angles (18˚- 55˚) and different types of movement have been generated by letting the cobble roll, bounce, or slide. Sliding was generated by embedding the cobble within a layer of sand. The position of the cobble travelling down the slope was derived from camera videos by a tracking algorithm developed within the study. In the second experimental campaign, a simplified analogue model of a woody debris dam was built from a single hollowed dowel with a length of 40 cm and a diameter of 3.8 cm. The sensor tag is installed in the woody dowel within a 2.5 cm longitudinal borehole. Two metal rigs are mounted at both sides of the woody dowel to allow different modes of movement. Specifically, the woody dowel is allowed to move either horizontally or vertically within a range of 20-30 mm, whereas it is always free to complete full rotations. The woody dowel is mounted on a frame within a 20 m long and 0.6 m wide flume. In these two experimental settings, combining data from the accelerometer, gyroscope and magnetometer it was possible to detect movements and differentiate between different type of motions both in a woody dowel and in the cobble under different initial conditions. Data were analysed to understand which type of information could be retrieved. This gives important insights for the assessment of the feasibility and effectiveness of the use of smart sensors in the detection of movements in woody logs within dams and boulders embedded in landslides, thus providing indications for the development of early warning systems using this innovative technology
    corecore