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1 Key Points:

12 e Large, deep-seated, slow-moving landslides show size-dependent sensitivity to large
13 changes in annual rainfall.

14 e The extreme wet season of 2017 triggered a widespread, but short-lived increase

15 in landslide activity and velocity.

16 ¢ Ongoing climate shifts in California will likely cause an overall increase in land-

v slide activity over the next century.
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Abstract

Episodically to continuously active slow-moving landslides are driven by precipitation.
Climate change, which is altering both the frequency and magnitude of precipitation world-
wide, is therefore predicted to have a major impact on landslides. Here we examine the
behavior of hundreds of slow-moving landslides in northern California in response to large
changes in annual precipitation that occurred between 2016 and 2018. We quantify the
landslide displacement using repeat-pass radar interferometry and pixel offset tracking
techniques on a novel dataset from the airborne NASA/JPL Uninhabited Aerial Vehi-
cle Synthetic Aperture Radar. We found that 312 landslides were moving due to extreme
rainfall during 2017, compared to 119 during 2016, which was the final year of a historic
multi-year drought. However, with a return to below-average rainfall in 2018, only 146
landslides remained in motion. The increased number of landslides during 2017 was pri-
marily accommodated by landslides that were smaller than the landslides that remained
active between 2016 and 2018. Furthermore, by examining a subset of 51 landslides, we
found that 49 had increased velocities during 2017 when compared to 2016. Our results
show that slow-moving landslides are sensitive to large changes in annual precipitation,
particularly the smaller and thinner landslides that likely experience larger basal pore-
water pressure changes. Based on climate model predictions for the next century in Cal-
ifornia, which include increases in average annual precipitation and increases in the fre-
quency of dry-to-wet extremes, we hypothesize that there will be an overall increase in
landslide activity.

1 Introduction

In mountainous regions around the world, landslides dominate erosion and land-
scape evolution [Booth et al., 2013; Kelsey, 1978; Korup et al., 2007; Larsen et al., 2010;
Mackey and Roering, 2011; Simoni et al., 2013] and pose a major natural hazard that
causes billions of dollars in damages and claims thousands of lives annually [Froude and
Petley, 2018; Kirschbaum et al., 2015]. Numerous factors, such as rainfall, snowmelt, earth-
quakes, river incision, and human activities can alter the stress balance along a hillslope
and trigger landslides. However, once they occur they can display a wide range of be-
haviors. The most hazardous landslides fail catastrophically and can move kilometers
downslope at rates up to tens of meters per second [e.g., Bell, 2018; Iverson et al., 2015].
Less hazardous, but still destructive, are landslides that move downslope at rates as low
as millimeters to meters per year (herein referred to as “slow-moving landslides”) and
can remain active for decades or longer [e.g., Bennett et al., 2016a; Bovis and Jones, 1992;
Keefer and Johnson, 1983; Nereson and Finnegan, 2018]. The persistent and long-term
motion of slow-moving landslides makes them particularly well suited for investigations
that aim to better understand landslide processes.

Slow-moving landslides occur worldwide in regions that have mechanically weak,
clay-rich materials (i.e., soil and rock), and high seasonal precipitation [e.g., Malet et al.,
2002; Rutter and Green, 2011; Simoni et al., 2013; Miao et al., 2014; Cerovski-Darriau
and Roering, 2016]. These landslides can display kinematic changes over timescales rang-
ing from 1072 to 102 days in response to stress perturbations that act to alter the driv-
ing stress or resisting strength. Stress perturbations caused by nearby earthquakes [e.g.,
Lacroiz et al., 2015], variations in atmospheric pressure [e.g., Van Genuchten and De Ri-
gke, 1989; Schulz et al., 2009a], and undrained loading [e.g., Hutchinson and Bhandari,
1971; Booth et al., 2018] have all been linked to observable changes in landslide behav-
ior. Most commonly, however, stress changes from infiltrating precipitation and snowmelt
drive changes in landslide activity [e.g., Terzaghi, 1951; Iverson and Major, 1987; Malet
et al., 2002; Coe et al., 2003; Rutter and Green, 2011].

Climate change, which is altering both the frequency and magnitude of precipita-
tion worldwide, is thus predicted to have a major impact on landslides [Jakob and Lam-
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bert, 2009; Crozier, 2010; Gariano and Guzzetti, 2016]. Regional increases in the inten-
sity, duration, and amount of precipitation will likely trigger or increase the activity of
landslides by generating elevated pore-water pressures that reduce the effective normal
stress (normal stress minus pore-water pressure) and consequently decrease the frictional
strength of hillslopes [Terzaghi, 1951]. For example, Chiang and Chang [2011] used land-
slide and climate models to predict up to a 12% increase in unstable hillslopes in Tai-
wan over the next century due to increased rainfall. In contrast, regional decreases in
rainfall will likely reduce landslide activity. Coe [2012] combined over a decade of con-
tinuous landslide monitoring data with climate models to predict a decrease in the ac-
tivity of the Slumgullion landslide, Colorado, over the next century due to decreased rain-
fall and increased temperature. Additionally, changes in rainfall patterns may have dif-
ferent effects on shallow and deep-seated landslides [Crozier, 2010; Gariano and Guzzetti,
2016]. Shallow landslides are more sensitive to changes in the intensity and duration of
individual storms [e.g., Tverson, 2000; Chiang and Chang, 2011], while deep-seated land-
slides are more sensitive to changes in seasonal and annual precipitation [e.g., Iverson
and Major, 1987; Malet et al., 2002; Rutter and Green, 2011]. However, uncertainties

in landslide and climate models make it difficult to assess how landslides will respond

to climate change.

Recent and ongoing climate shifts in California have already had an impact on the
behavior and activity of landslides [Bennett et al., 2016a; Handwerger et al., 2019; Nere-
son and Finnegan, 2018; East et al., 2018]. Over the past decade, California has expe-
rienced both a historic drought (2012-2016) and the second wettest year on record (2017)
[Griffin and Anchukaitis, 2014; Robeson, 2015; Swain et al., 2016, 2018]. Bennett et al.
[2016a] found that the mean velocity of slow-moving landslides in the northern Califor-
nia Coast Ranges reached a 70-year minimum during the recent historic drought. Slow-
moving landslides in the central California Coast Ranges also displayed minimum veloc-
ities during the drought [Nereson and Finnegan, 2018], but displayed high velocities dur-
ing the extreme wet year of 2017 [Handwerger et al., 2019; Warrick et al., 2019]. Rapid
shifts from dry-to-wet extremes in California, similar to the changes in precipitation that
occurred between 2012 and 2017, are predicted to increase by 25% to 100% during the
21th century [Swain et al., 2018]. In addition to these changes in precipitation extremes,
annual mean precipitation could increase by 12% across the state [Allen and Luptowitz,
2017]. If these climate model predictions hold true, there could be an increase in both
landslide activity and landslide hazards.

To better understand how landslides respond to rapid climate shifts, such as the
recent transition from historic drought to the second wettest year on record, we map and
quantify the kinematic response of hundreds of slow-moving landslides in the Eel River
catchment, northern California Coast Ranges, between 2016 and 2018. Tracking the time-
dependent behavior of large inventories of landslides is necessary to determine their haz-
ard potential and the role they play in landscape evolution. State-of-the-art remote sens-
ing techniques, such as satellite and airborne synthetic aperture radar interferometry (In-
SAR), provide millimeter- to centimeter-scale measurements of ground surface change
that can be used to quantify landslide motion across entire mountain ranges [e.g., Cole-
santi and Wasowski, 2006; Scheingross et al., 2013; Bayer et al., 2018]. These monitor-
ing tools, combined with field and laboratory measurements, help to improve our under-
standing of the mechanisms that control landslides and allow us to better understand
how landslides respond to environmental changes, such as the warming global climate.

Here, we identify and monitor active landslides using InSAR and pixel offset track-
ing techniques with a novel dataset from the NASA /JPL Uninhabited Aerial Vehicle Syn-
thetic Aperture Radar (UAVSAR) that we designed specifically to monitor the Eel River
landslides. This is the first study to use UAVSAR data to track the time-dependent mo-
tion of numerous slow-moving landslides in response to large changes in rainfall. We ex-
amine relationships between landslide activity, displacement, velocity, geometry, and pre-
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cipitation to document how large hydrologic changes impact landslide activity and kine-
matics. We also discuss the implications of our findings for understanding landslide mech-
anisms and how ongoing and future climate change may affect landslide behaviors and
landscape evolution.

2 Study area: northern California Coast Ranges

Our study focuses on a ~4700 km? area that contains hundreds of episodically to
continuously active slow-moving landslides located within the Eel River catchment, north-
ern California Coast Ranges (Figure 1). Due to high landslide activity, the northern Cal-
ifornia Coast Ranges have been a focus site for landslide investigations for over four decades
[Bennett et al., 2016b,a; Booth et al., 2013; Booth and Roering, 2011; Handwerger et al.,
2013, 2015; Iverson and Major, 1987; Kelsey, 1978; Mackey et al., 2009; Mackey and Roer-
ing, 2011; Mackey et al., 2011; Roering et al., 2009, 2015; Schulz et al., 2018a; Zhao et al.,
2012]. Nearly all of the slow-moving landslides are underlain by the Jurassic-Cretaceous
Franciscan Complex mélange (Figure 1), which comprises tectonically sheared sandstone,
siltstone, shale, meta-sandstone, greenstone, chert, blueschist, and serpentinite [Jennings
et al., 1977; McLaughlin et al., 1982; Jayko et al., 1989; McLaughlin et al., 2000]. The
vegetation in the slow-moving landslide-prone areas of the Eel River catchment consists
of open oak grassland; and the region is primarily used for cattle grazing and agricul-
ture [Kelsey, 1978; Mackey and Roering, 2011].

The northern California Coast Ranges have a Mediterranean climate with seasonal
precipitation that occurs primarily between October and May, 30-50% of which is de-
livered by landfalling atmospheric rivers [Dettinger et al., 2011]. Our field area is cen-
tered on Kekawaka Creek (Figure 1), which has a long-term average annual precipita-
tion of ~1.55 m (Figure 2), calculated between the 1895 and 2018 water years (WY) us-
ing data from the Parameter-elevation Regressions on Independent Slopes Model (PRISM)
Climate Group at Oregon State University. Note the water year is defined as the time
period between October 1 and September 30, such that WY2017 = October 1, 2016 to
September 30, 2017. Average annual precipitation varies across the northern California
Coast Ranges with the largest cumulative precipitation occurring in the Northwest and
decreasing towards the Southeast (Figure 3; Figure S1).

Recent climate shifts in California have already had severe consequences on wa-
ter supply, agriculture, infrastructure, wildfires, ground subsidence, sediment flux, and
landslides [Bekaert et al., 2019; Bennett et al., 2016a; Chaussard et al., 2017; Diffenbaugh
et al., 2015; Handwerger et al., 2019; Murray and Lohman, 2018; Swain et al., 2018; Fast
et al., 2018]. Between the 2012 and 2018 water years, California experienced one of its
most extreme droughts and the second wettest year in recorded history [Diffenbaugh et al.,
2015; Griffin and Anchukaitis, 2014; Swain et al., 2018]. In the Kekawaka Creek area,
minimum rainfall was 0.82 m during WY2014 and maximum rainfall was 2.21 m dur-
ing WY2017 (Figure 2). The extreme rainfall during WY2017 resulted from an unusu-
ally high number of atmospheric river storms, including the strongest atmospheric river
event in the past 70 years [Gershunov et al., 2017; Guirguis et al., 2018; Swain et al., 2018].
These large changes in rainfall subsequently caused transitions between dry and wet soil
moisture conditions, as quantified by the Palmer Drought Severity Index (PDSI) (Fig-
ure 2). The PDSI (data provided by the WestWide Drought Tracker) is an estimate of
relative dryness (negative and positive values correspond to dry and wet conditions, re-
spectively) and serves as a good proxy for the conditions that drive landslide motion be-
cause it is based on temperature and precipitation data and accounts for antecedent con-
ditions [Bennett et al., 2016a; Nereson and Finnegan, 2018]. The PDSI shows dry con-
ditions between WY2013 and WY2016 and in WY2018, and wet conditions in WY2012
and WY2017 (Figure 2). Although WY2012 was the first year of the historic Califor-
nia drought, the Kekawaka Creek area received sufficient rainfall in preceding years such
that wet soil conditions were maintained and the multi-year period of dry soil conditions
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began in WY2013. Our study focuses on the period between WY2016 and WY2018, dur-
ing which time the PDSI shows a transition from dry to wet to dry conditions.

Slow-moving landslides in the Eel River catchment are often large (>500 m long),
deep-seated (>3 m thick) masses that move downslope at rates up to several meters per
year [Bennett et al., 2016b,a; Handwerger et al., 2013, 2015; Mackey and Roering, 2011].
Due to their flow-like appearance, these landslides are often referred to as earthflows; how-
ever, most of their displacement occurs by sliding along narrow basal and lateral shear
zones [Keefer and Johnson, 1983; Nereson and Finnegan, 2018; Schulz et al., 2018a]. Sim-
ilar types of slow-moving landslides occur in mountainous areas around the world [Malet
et al., 2002; Rutter and Green, 2011; Simoni et al., 2013; Miao et al., 2014; Cerovski-
Darriau and Roering, 2016]. The slow-moving landslides occur in a mechanically weak
(friction angle ~15 degrees), clayey granular soil (chlorite, illite/mica, smectite) with low
hydraulic diffusivity (~ 1076 m?/s) [Iverson and Major, 1987; Keefer and Johnson, 1983;
Nereson et al., 2018; Schulz et al., 2018a,b].

Historical optical imagery has been used to track the activity of many of the Eel
River slow-moving landslides for over 70 years [Bennett et al., 2016a; Mackey and Roer-
ing, 2011]. These landslides display unsteady motion with velocities that are highly vari-
able both within a single landslide and between neighboring landslides [Mackey et al.,
2009; Handwerger et al., 2013, 2015]. Over seasonal timescales, the Eel River landslides
exhibit velocity changes that generally correspond to precipitation-induced changes in
pore-water pressure [Iverson and Major, 1987; Schulz et al., 2018a,b]. Typically, each
landslide accelerates during the wet season and decelerates throughout the dry season.
However, the timing of speed minima and maxima and sliding behavior can vary from
year to year [Handwerger et al., 2013, 2015, 2019; Schulz et al., 2018a]. Furthermore, the
seasonal velocity changes displayed by these slow-moving landslides are superimposed
onto yearly—and decadal—scale velocity variations [Bennett et al., 2016a; Mackey et al.,
2009]. Mackey et al. [2009] found that the Kekawaka landslide (located in our field area;
see Figure 4) reached peak velocities between 1964 and 1981 and then decelerated un-
til 2006. They suggested that the peak velocities were a result of a particularly wet time
period in California. Bennett et al. [2016a] analyzed the behavior of 98 Eel River land-
slides and showed that the mean velocity of the landslides decreased 85% between 1944
and 2015, with minimum velocities coinciding with the historic drought between 2012
and 2015. Furthermore, they showed that these velocity changes are correlated with the
PDSI such that periods of increased dryness (i.e., drought) correspond to low landslide
velocities. Nereson and Finnegan [2018] also found that the PDSI serves as a good proxy
for the conditions that drive increased or decreased landslide motion for the transport
zone of the Oakridge landslide in central California. In order to better understand how
landslides will respond to future and ongoing climate shifts, we explore how the recent
transition from dry to wet conditions impacted the landslide activity in northern Cal-
ifornia.

3 Methods
3.1 InSAR and pixel offset tracking

Satellite and airborne InSAR provide millimeter- to centimeter-scale measurements
of surface deformation and have been used to quantify the ground surface deformation
associated with landslides [e.g., Bayer et al., 2018; Hu et al., 2016; Schligel et al., 2015],
faults [e.g., Fielding et al., 2005; Fialko et al., 2001; Huang et al., 2017a], glaciers [e.g.,
Gourmelen et al., 2011; Milillo et al., 2019], and ground subsidence [e.g., Bekaert et al.,
2019; Chaussard et al., 2017; Murray and Lohman, 2018]. Previous studies have used satellite-
based InSAR to identify and monitor slow-moving landslides in the California Coast Ranges
[Cohen-Waeber et al., 2018; Handwerger et al., 2013, 2015, 2019; Hilley et al., 2004; Roer-
ing et al., 2009, 2015; Zhao et al., 2012]. InSAR techniques work particularly well for
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monitoring slow-moving landslides in the California Coast Ranges because they have sparse
vegetation and move downslope at relatively low rates.

We use a novel dataset from the NASA/JPL UAVSAR airborne system that we
designed specifically to monitor the Eel River landslides (Figure 1; Figure 4). Previous
work by Delbridge et al. [2016] used UAVSAR data to measure the 3-D kinematics of
the Slumgullion landslide, Colorado; and previous work by Scheingross et al. [2013] used
UAVSAR data to map 150 landslides and explore their relation to the creeping section
of the San Andreas Fault in central California. Our study is the first to use UAVSAR
data to track the time-dependent behavior of hundreds of slow-moving landslides in re-
sponse to large changes in rainfall. The UAVSAR system is flown aboard a NASA Gulf-
stream III and acquires data with a L-band (24 c¢cm radar wavelength) radar that has a
pixel size of 0.6 m in azimuth and 1.67 m in range. For each data acquisition (dates listed
in Table S1), data were acquired along four different flight paths and thus each flight pro-
vides four line-of-site measurements when processed to interferograms. SAR data were
acquired eight times between April 2016 and February 2018 (Table S1). We process all
possible combinations of interferograms, which results in 112 interferograms (28 along
each flight path; Figure S2; Table S1). The minimum time between a single interfero-
gram pair is 47 days and the maximum time is 673 days. We process the data from UAVSAR
Single Look Complex (SLC) stacks using the InSAR Scientific Computing Environment
(ISCE) software package developed at JPL/Caltech/Stanford [Rosen et al., 2012] with
8 looks in azimuth and 3 looks in range, resulting in a 4.8 m azimuth by 5 m range pixel
size. To remove topographic contributions to the phase and to geocode the interferograms,
we use a 12 m pixel spacing digital elevation model DEM from the German Aerospace
Center (DLR) TanDEM-X and reduce phase noise by applying a standard power spec-
trum filter with a filtering parameter value of 0.7 [Goldstein and Werner, 1998].

The persistent downslope motion and large deformation gradients of slow-moving
landslides can introduce phase unwrapping errors when using conventional InSAR tech-
niques to process long-time-span interferograms. These errors occur when the displace-
ment between adjacent pixels exceeds half the radar wavelength. An example of InSAR
unwrapping errors at the Boulder Creek landslide is shown in Figure S3. To overcome
these types of unwrapping errors, previous studies implemented a deformation model into
the InSAR processing that helped remove large phase gradients [Handwerger et al., 2015,
2019]. While this technique can improve the quality of interferograms, it requires a de-
formation model for each landslide and is therefore best suited for studies that focus on
a small numbers of landslides. Therefore, we also use pixel offset tracking with SAR data
to overcome issues associated with large displacements. Our pixel offset tracking uses
incoherent cross correlation of the SAR amplitude images to calculate offsets (i.e., dis-
placements) of nearly identical features. Pixel offset tracking circumvents issues related
to high deformation rates because it does not require phase unwrapping. In addition,
it also provides two-dimensional measurements (i.e., look direction and along track di-
rection). This technique has been used with both SAR data and optical imagery to suc-
cessfully measure large displacements associated with landslides, faults, and glaciers [e.g.,
Bao et al., 2019; Bennett et al., 2016a; Dehecq et al., 2015; Fialko et al., 2001; Huang
et al., 2017b; Leprince et al., 2008; Pathier et al., 2006; Stumpf et al., 2017]. However,
pixel offset tracking is less accurate (i.e., sensitive to 1/20 of the pixel size) than con-
ventional InSAR and is therefore best suited for landslides that move at least decime-
ters to meters per year and for datasets with high spatial resolution such as UAVSAR.
We process pixel offsets from the full resolution SAR SLC images using the standard ISCE
amplitude matching program. We explored a range of correlation window sizes from 16
to 256 and found that a matching window of 64 range x 128 azimuth provided the best
landslide deformation signal. We process all possible combinations of SAR data, result-
ing in 112 pixel offset maps (28 on each flight path; Figure S2; Table S1).

©2018 American Geophysical Union. All rights reserved.



277

278

279

281

282

33

284

285

36

287

38

289

20

291

292

793

294

295

96

297

298

299

300

301

303

304

25

506

307

08

309

310

313

214

316

317

319

320

21

522

323

24

325

326

27

3.2 Time series and three-dimensional surface displacement inversions

We construct cumulative displacement time series inversions from the UAVSAR
pixel offset tracking measurements using the Generic InSAR Analysis Toolbox (GIAnT)
[Agram et al., 2013] with the Small Baseline Subset (SBAS) method [Berardino et al.,
2002; Schmidt and Biirgmann, 2003]. We then use data from overlapping flight paths to
invert for 3-D surface displacement time series. The 3-D inversions require three or more
independent measurements of ground displacement. Each flight path provides two in-
dependent measurements using pixel offset tracking (i.e., range and azimuth). We com-
bine four independent measurements for areas where two flight paths overlap and six in-
dependent measurements for areas where three flight paths overlap.

Each measurement from the UAVSAR is composed of the true displacement vec-
tor projected onto the look direction or along-track (i.e., azimuth) direction of the UAVSAR.
Using the overlapping measurements and information about the geometry of the UAVSAR
allows us to solve for the true 3-D motion using a least squares inversion [details described
in Delbridge et al., 2016]. We perform the least squares inversion using the MATLAB
software package. We also quantified errors in the pixel offset displacement measurements
by calculating the mean and standard deviation values across a ~10 km? region with no
active landslides. The mean displacement error over the full study period was 0.09 + 0.05
m (£ 1 standard deviation). To help reduce errors in the displacement measurements,
we apply displacement thresholds to the time series inversion. We remove all pixels with
cumulative horizontal displacements <0.2 and >20 m over the full study period. This
essentially removes all stable areas and areas that have displacements that significantly
exceed those displayed by the Eel River landslides (cm/yr to m/yr) [Bennett et al., 2016a;
Handwerger et al., 2015; Mackey and Roering, 2011].

3.3 Landslide reconnaissance and metrics

We construct a new inventory of landslides active between April 2016 and Febru-
ary 2018. We initially identify active landslides using InSAR velocity maps. To be con-
sidered active, the landslides need to display clear ground surface deformation during
the study period. We then use the high-resolution DEMs, Google Earth images, and pre-
viously published inventories [Bennett et al., 2016b; Handwerger et al., 2015; Mackey and
Roering, 2011] to confirm that the deformation signals correspond to landslides. Figure
4 shows an example of InSAR velocity maps and landslide inventories for two different
UAVSAR flight tracks. Areas with relatively high positive or negative line-of-sight (LOS)
velocities generally correspond to active landslides. The positive and negative values in-
dicate motion towards or away from the UAVSAR radar, respectively.

To explore how changes in precipitation and relative dryness (i.e., PDSI) affected
the landslide activity, we delineate our landslide inventory into three water year periods,
which encompassed: 1) WY2016 (April 7, 2016 to October 4, 2016), 2) WY2017 (Oc-
tober 4, 2016 to October 30, 2017), and 3) WY2018 (October 30, 2017 to February 9,
2018). These time periods are set by the UAVSAR data acquisitions. Although only the
second time period spans a full water year, and all three periods lie outside the defined
start and end of the water year (i.e., October 1 to September 30), our analysis gener-
ally covers the period of increased seasonal activity in the Eel River landslides (Novem-
ber to June) [Handwerger et al., 2013, 2015]. In addition, the seasonal patterns of pre-
cipitation were relatively consistent, with the onset of seasonal rainfall beginning in Oc-
tober and ending in June (Figure S5). Therefore, we assume the landslide inventories
are approximately representative of each water year. However, we note that our inven-
tories likely underestimate the number of active landslides during WY2016 and WY2018.

We quantify the spatial attributes (i.e., area, length, width, slope angle) of each
landslide using the 12 m TanDEM-X DEM. We also estimate the landslide thickness, which
is the most important length scale in controlling their response to seasonal precipitation

©2018 American Geophysical Union. All rights reserved.
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[e.g., Tverson, 2000; Berti and Simoni, 2012]. We estimate thickness from field-based ob-
servations and area-thickness geometric scaling relations defined as Z = aA”, where

Z is the landslide thickness, 7y is the power law exponent, « is a fit parameter, and A is
the landslide area [Guzzetti et al., 2009; Larsen et al., 2010; Handwerger et al., 2013; Si-
moni et al., 2013]. Field-based estimates of thickness for landslides in our study site were
made from lidar and field observations of 69 landslides where transects into the landslide
body were exposed by incised channels and gullies [Mackey and Roering, 2011]. These
thickness estimates are considered the minimum landslide thickness because no basal shear
zones were observed. Using these data, Handwerger et al. [2013] found o = 0.46 and

~v = 0.29. These scaling relations are comparable to those derived from borehole data

(¢ =0.44 and v = 0.31) from similar types of slow-moving landslides in Italy [Simoni

et al., 2013]. We emphasize that without actual measurements of landslide thickness, we
treat these as first-order estimates to characterize landslides as relatively thinner or thicker.

4 Results
4.1 Landslide activity

In total, we identified 312 active landslides during our ~2 year study period that
range in planform area from 7.4 x 103 to 3.1 x 10 m? and mean slope angle from 11
to 39 degrees (Table S2). Comparison with the inventory compiled by Bennett et al. [2016b]
reveals 102 landslides that were previously unmapped; 123 active landslides mapped by
both studies; 58 landslides that enlarged in planform area; 71 landslides that were mapped
as active by Bennett et al. [2016b], but did not display clear deformation signals in our
dataset; 87 reactivated landslides (i.e., mapped as dormant by Bennett et al. [2016b]);
and 167 landslides that were mapped as dormant by both studies (i.e., previously mapped
landslides that showed no active deformation). The previously unmapped landslides were
either recently triggered or were possibly missed by Bennett et al. [2016b], who manu-
ally mapped landslides using satellite and aerial optical images. The differences in our
landslide inventories can result from real changes in landslide activity, bias from the dif-
ferent mapping techniques (InSAR vs. optical images), and from human error (i.e., man-
ual landslide mapping). Lastly, we further classified 53 of the landslides as “possible land-
slides” because they displayed a strong InSAR signal similar to the other active land-
slides but were covered with dense vegetation, making it difficult to observe surface de-
formation features using our additional criteria (e.g., Google Earth images).

The landslide activity also changed in time due to the large changes in precipita-
tion. We mapped 119 active landslides during WY2016, 312 landslides during WY 2017,
and 146 landslides during WY2018 (Figure 5; Table S2). There were also changes in the
individual landslides moving each year. We found 93 landslides that were active during
all three water years, 5 landslides that were only active during WY2016, 185 landslides
that were only active during WY2017, and 17 landslides that were only active during
WY2018. Figure 5 shows the cumulative frequency-magnitude (i.e., landslide area) re-
lationship and the kernel density estimate (i.e., probably density) for our landslide in-
ventories. We found that there was a similar distribution of landslides during WY2016
and WY2018 and that the increased landslide frequency during WY2017 was accommo-
dated by smaller landslides with areas <1x 10° m? and estimated thicknesses <15 m
(Figure 5). Using a two-sample Kolmogorov-Smirnov (KS) test for landslide area (sig-
nificance level 0.01), we can reject the null hypothesis that the landslides only active dur-
ing WY2017 are from the same distribution as landslides moving during all three WY.
Finally, there are no clear differences in the distributions of the landslide spatial attributes
(i.e., slope, length, width), other than area (i.e., thickness), that can be used to differ-
entiate the inventories during the three water years (Table S2). For example, using the
two-sample KS test for mean slope angle, we cannot reject the null hypothesis that the
landslides only active during WY2017 are from the same distribution as landslides mov-
ing during all three WY.
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4.2 Landslide kinematics

Each landslide generally displayed a nonuniform spatial velocity pattern, i.e., some
parts are moving faster than others (Figure 4). These spatial velocity patterns remained
fixed during our study period and are similar to those patterns observed between 1944
and 2015 [Bennett et al., 2016a; Handwerger et al., 2013, 2015; Mackey and Roering, 2011].
To quantify the time-dependent changes in velocity, we selected a subset of 51 landslides
for 3-D time series inversions using the pixel offset tracking method (Figure 6). These
landslides were selected because they showed the strongest deformation signal when us-
ing the pixel offset tracking technique. We assume these landslides are representative of
the Eel River landslides during our study period.

Figure 7 shows the characteristic horizontal displacement and velocity time series
for the 51 landslides. We defined the characteristic values for each landslide as the 75th
percentile value within the mapped landslide body [Bayer et al., 2018]. This value gives
less weight to the slower—moving areas and noisy areas with false high velocities that were
not removed by our displacement thresholds (see example in Figure S3). We found that
the maximum characteristic horizontal displacement for a single landslide over the full
study period was ~10 m, the minimum displacement was ~0.6 m, and the median dis-
placement for all 51 landslides was ~2.7 m. There was a large increase in displacement
for each landslide that corresponded to the large increase in precipitation during WY2017.
The landslide response to precipitation is even more evident when examining the nor-
malized displacement and the normalized precipitation (Figure 8), which accentuates the
deformation and precipitation patterns. The displacement patterns track the precipita-
tion patterns with a time lag that is on the order of months. While we cannot more ac-
curately resolve the time lag due to the infrequent sampling of the UAVSAR data (the
median time period between data acquisitions was 75 days), this agrees with previous
findings for the Eel River landslides [Handwerger et al., 2013]. We also examined the ve-
locity time series of each landslide (Figure 7). The maximum characteristic horizontal
velocity for a single landslide was ~16 m/yr, which occurred during the wet season of
WY2017, and the minimum characteristic horizontal velocities approached zero as a few
of the landslides appeared to come to a complete halt during the dry season. There was
also a large range in the landslide velocities during WY2017, when compared to WY2016
and WY2018. We compared the normalized velocity changes to the PDSI time series for
our field area and found there is a good agreement (Figure 8). Velocities increase when
the soil is becoming wetter and decrease when the soil is becoming dryer. The PDSI also
indicates that during the WY2016 and WY2018, the region was under dry conditions,
while almost all of WY2017 was under wet conditions (Figure 8).

To better understand the relationship between precipitation, landslide velocity, and
landslide geometry, we compared values over a similar time period for WY2016 and WY2017.
For WY2016, we calculated the velocity between April 2016 and October 2016 and for
WY2017 we calculated the velocity between March 2017 and October 2017. This time
period spans the seasonal deceleration for both water years. Figure 9 shows the ratio of
the WY2017 velocity to WY2016 velocity as a function of estimated thickness and mea-
sured average width. We analyzed the landslide width in addition to the estimated thick-
ness because the width has also been found to scale with thickness [e.g., Hovius et al.,
1997]. We find that 49 of the 51 landslides were moving faster during WY2017 when com-
pared to a similar time period in WY2016 and that the smaller (i.e., narrower and thin-
ner) landslides displayed larger velocity changes (Figure 9). There was up to a six-fold
increase in velocity for the smaller landslides and less than a two-fold increase in veloc-
ity for the largest landslides. Interestingly, the two landslides that were moving slower
during WY2017 were two of the smaller landslides whose velocities were ~1.1 times slower.
We also found no relation between the landslide velocity ratio, mean velocity, and to-
pographic slope (Figure 9). In addition to the size-dependent velocity response, we also
explored how the spatial gradients in rainfall impacted the landslide velocity by exam-
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ining the response from north to south and west to east (Figure S6). We found no clear
relation between the spatial gradients in rainfall and the velocity ratio.

5 Discussion

Our data reveal that large changes in the activity of slow-moving landslides occurred
over a short time period in response to large changes in annual precipitation. We found
that 312 landslides were moving due to the extreme rainfall of WY2017, compared to
only 119 during the last drought year of WY2016. With a return to low rainfall amounts
during WY2018, only 146 landslides remained in motion. We emphasize again that due
to the irregular time sampling of the UAVSAR data, we likely underestimated the to-
tal number of active landslides in WY2016 and WY2018. Nonetheless, the role of an-
tecedent rainfall is apparent in the temporal differences in landslide activity. We found
that more landslides were moving in WY2018 than in WY2016, despite significantly lower
rainfall in WY2018. This suggests that the above-average rainfall in WY2016 and WY2017
influenced the behavior of landslides in WY2018, while the period of below-average rain-
fall between WY2012 and WY2015 influenced the behavior of landslides in WY2016.

The majority of the landslides that were triggered or reactivated in WY2017 were
smaller than the landslides that remained active between WY2016 and WY2018 (Fig-
ure 5). Using area-thickness scaling relations and measurements from DEMs, we found
that landslides <1x10° m? and <15 m thick were most sensitive to the precipitation changes
(Figure 9). These observations suggest that larger and thicker landslides are less sensi-
tive (but still responsive) to rainfall over monthly or annual timescales and also shows
that there is still sufficient water (i.e., pore-water pressure) available to drive slow mo-
tion of many landslides even during dry conditions, while smaller and thinner landslides
experience larger pore pressure swings that can both trigger motion and result in larger
changes in velocity (Figure 9 and Figure S7). These kinematic changes are consistent
with changes in pore-water pressure recorded by ground-based measurements (Figure
S7) and predicted by models, which show that stronger and more rapid pore-water pres-
sure changes occur near the ground surface and diffuse as they propagate vertically down-
wards [e.g., Berti and Simoni, 2012; Iverson, 2000; Schulz et al., 2018b]. Furthermore,
our findings agree with Bennett et al. [2016a] who showed that landslides with estimated
thicknesses <15 m had the most variable velocities in the face of the recent historic drought.

By examining the time series behavior of 51 landslides, we found that each land-
slide displayed seasonal kinematic changes with a large increase in displacement and ve-
locity during the extreme rainfall of WY2017 (Figure 7). Our findings agree with pre-
vious studies that have shown that landslides in the California Coast Ranges can dis-
play large displacements in certain years [lverson and Magjor, 1987; Mackey and Roer-
ing, 2011; Nereson and Finnegan, 2018]. For example, Iverson and Major [1987] found
that the Minor Creek landslide, northern California, displayed a large increase in dis-
placement during WY1984 due to an unusually rainy summer in WY1983. In fact, WY1983
was the wettest year on record in California. Similarly, Nereson and Finnegan [2018] showed
that the Oakridge landslide in central California, which also occurs in the Franciscan mélange,
displayed large variations in annual displacement between 1937 and 2017 due to changes
in climate-driven surface moisture.

Although these landslides displayed large increases in velocity, none of them (to
our knowledge) continued to accelerate towards runaway instability and catastrophic fail-
ure, which suggests that these landslides might have a stabilizing mechanism that allows
them to display slow sliding for long time periods. The two most common mechanisms
invoked to explain this behavior are shear-induced dilatancy [e.g., Iverson, 2005; Schulz
et al., 2009b], which can cause a reduction in pore-water pressure, and shear-displacement
and/or rate-strengthening friction [e.g., Handwerger et al., 2016; Keefer and Johnson,
1983; Scaringi et al., 2018; Tika et al., 1996; Wang et al., 2010], both of which act to in-
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crease the frictional resistance during sliding. It is also possible that both of these mech-
anisms work in concert to inhibit runaway acceleration, or that other strengthening mech-
anisms are important. For example, Schulz et al. [2018a,b] performed advanced labora~
tory testing on material from the Two Towers landslide (located in our field area; see Fig-
ure 4) and found that shear resistance was invariant with shear displacement rate (al-
though tested rates were two orders of magnitude or more faster than observed landslides
speed) and that there was no shear-induced dilatancy, which also was suggested by in
situ monitoring results. However, they found that the soil swelling pressure exerted along
the landslide’s lateral shear zones increased landslide stability by as much as 6%, which
contributes to reducing the potential for catastrophic failure. In addition, we hypoth-
esize that landslide drainage networks are important for reducing pore-water pressures

and preventing runaway acceleration [e.g., Coe et al., 2003; Handwerger et al., 2013; Krzeminska

et al., 2013; Van der Spek et al., 2013]. These landslides tend to have well-developed sur-
face, and possibly subsurface, drainage networks that can efficiently transfer water to

the river network and reduce pore-fluid pressures such that the landslide groundwater
system typically maintains a narrow range of pore-water pressures that are sufficient to
drive motion, but is also susceptible to changes during years of extreme precipitation or
drought. Given only our remote sensing data, we are unable to determine the relevant
processes stabilizing the landslides that we studied. We highlight the need for further
field and laboratory-based measurements and models, such as those utilized by Schulz

et al. [2018a,b], for multiple landslides in this region to better understand these processes.

Annual precipitation and precipitation extremes (i.e., dry-to-wet year transitions)
are both predicted to increase in California over the next century [Allen and Luptowitz,
2017; Swain et al., 2018; Zecca et al., 2018]. The rainfall seasonality in California may
also become more intense, with more rainfall delivered between December and March,
with relatively less rainfall between September-November and March-May. Based on these
predicted changes in precipitation and the findings of our study, we hypothesize there
may be a preferential formation of smaller landslides, more frequent widespread land-
sliding, large changes in landslide displacement from year-to-year, and a more frequent
transition of landslides between active and dormant. These changes in landslide activ-
ity could increase landslide hazards to humans and the built environment. Additionally,
changes in the landslide activity over yearly timescales may alter the hillslope morphol-
ogy, drainage networks, and the timing and volume of sediment delivered to rivers, which
could in turn modify channel incision and hillslope evolution [e.g., Kelsey, 1978; Sklar
and Dietrich, 2004; Whipple, 2004; Ouimet et al., 2007; Korup et al., 2010; Mackey and
Roering, 2011; Booth et al., 2013; Golly et al., 2017; Bennett et al., 2016b; Nereson and
Finnegan, 2018]. More work is needed to better understand the interactions between hill-
slopes and channels in areas dominated by slow-moving landslides during dry-to-wet year
transitions.

Our findings document the sensitivity of slow-moving landslides to large changes
in annual precipitation. These findings agree with numerous studies of both slow- and
fast-moving landslides around the world that have highlighted potential impacts of cli-
mate change on landslide behaviors [e.g., Crozier, 2010; Gariano and Guzzetti, 2016).
Although it is likely that increases in landslide activity will occur in regions where pre-
cipitation is likely to increase due to climate change [e.g., Bovis and Jones, 1992; Jakob
and Lambert, 2009; Chiang and Chang, 2011], there are also regions where precipitation,
and therefore landslide activity, is predicted to decrease [e.g., Coe, 2012; Gariano and
Guzzetti, 2016]. Furthermore, regional changes in climate patterns may influence the style
and type of landslides, such that changes in individual storms will likely influence shal-
low landslide activity, while changes in seasonal and annual precipitation will likely in-
fluence deep-seated landslide activity. It is therefore imperative that we improve mechanical-
hydrological models that can predict the future behavior of landslides given inputs from
climate models [e.g., Chiang and Chang, 2011; Coe, 2012; Gariano and Guzzetti, 2016;
Nereson and Finnegan, 2018]. Thus, documenting the past and present landslide response
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to changes in precipitation that may mimic future climate scenarios in different regions
around the world is essential to provide insight into future landslide behaviors, hazards,
and landscape evolution.

6 Conclusions

We used a novel dataset acquired by the NASA /JPL UAVSAR airborne SAR in-
terferometry system to identify and monitor hundreds of slow-moving landslides in the
Eel River catchment, northern California, between April 2016 and February 2018. Dur-
ing this time period there were large changes in annual precipitation, including the 2017
rainy season, which was the second wettest year on record in California, and which fol-
lowed a multi-year period of extreme drought. We quantified changes in landslide activ-
ity and kinematics over the ~2 year study period and determined that the extreme rain-
fall of 2017 triggered a widespread, but short-lived increase in the activity and velocity
of the landslides. These kinematic changes were strongest in the smallest landslides and
highlight the sensitivity of these landslides to large changes in precipitation. Based on
future predictions of climate change and precipitation occurring over the next century,
we expect that there will be large changes in landslide behavior that may increase land-
slide hazards to humans and cause sediment delivery to streams to be more extreme and
episodic. We therefore highlight the need for observations and models that can help pre-
dict such precipitation-induced changes to landslide activity.
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Figure 1. Eel River catchment, northern California. UAVSAR flight paths (black

and colored rectangles) and Franciscan Complex mélange [Jennings et al., 1977] draped over a
hillshade of the topography. The azimuth (along track) and look direction of the UAVSAR in-
struments are shown with black and green arrows in the legend. Black polygons show mapped
slow-moving landslides from this study and from previously published inventories [Bennett et al.,
2016b; Handwerger et al., 2015; Mackey and Roering, 2011]. Thin blue lines show major rivers
and tributaries. Dotted line shows San Andreas Fault and arrows show relative fault motion.

Inset shows field site location within California. Digital elevation model from TanDEM-X.
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Severity Index (PDSI) with positive values corresponding to wet conditions (blue) and negative
values corresponding to dry conditions (orange). Precipitation data from PRISM and PDSI data
from the WestWide Drought Tracker.
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Figure 3. Precipitation maps for northern California Coast Ranges. (a,b,c) cumula-
tive precipitation for the 2016, 2017, and 2018 water years draped over a hillshade of the topog-
raphy. Black polygons show mapped slow-moving landslides from this study and from previously
published inventories [Bennett et al., 2016b; Handwerger et al., 2015; Mackey and Roering, 2011].
Thin blue lines show major rivers and tributaries. Precipitation data from PRISM and digital

elevation model from TanDEM-X.
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of the UAVSAR. The azimuth (along track) and look direction of the UAVSAR instruments

are shown with black arrows. Changes in the activity of the landslides are based on previously
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Digital elevation models from OpenTopography and TanDEM-X.
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WY2017. Thin blue lines correspond to major rivers and tributaries. (b-d) Active landslide map
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Figure 9. Landslide velocity as a function of size and topographic slope. (a) Velocity
ratio as a function of landslide area and estimated thickness from area-thickness scaling relation-
ships. Dashed vertical lines highlight constant thickness values. (b) Velocity ratio as a function
of average landslide width. (c) Velocity ratio as a function of average slope angle. (d) Average
velocity over the full study period as a function average slope angle. Velocity ratio is calculated
over a similar time period for WY2017 (March—October 2017) and WY2016 (April-October

2016). Dashed horizontal lines in (a-c) show velocity ratio equal to one.
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