8 research outputs found

    Discovery of an old nova remnant in the Galactic globular cluster M 22

    Get PDF
    A nova is a cataclysmic event on the surface of a white dwarf in a binary system that increases the overall brightness by several orders of magnitude. Although binary systems with a white dwarf are expected to be overabundant in globular clusters (GCs) compared to the Galaxy, only two novae from Galactic globular clusters have been observed. We present the discovery of an emission nebula in the Galactic globular cluster M 22 (NGC 6656) in observations made with the integral-field spectrograph MUSE. We extract the spectrum of the nebula and use the radial velocity determined from the emission lines to confirm that the nebula is part of NGC 6656. Emission-line ratios are used to determine the electron temperature and density. It is estimated to have a mass of 1 to 17×10−517 \times 10^{-5} solar masses. This mass and the emission-line ratios indicate that the nebula is a nova remnant. Its position coincides with the reported location of a 'guest star', an ancient Chinese term for transients, observed in May 48 BCE. With this discovery, this nova may be one of the oldest confirmed extrasolar events recorded in human history.Comment: 7 pages, 3 figures; accepted for publication in Astronomy & Astrophysic

    A stellar census in globular clusters with MUSE: Binaries in NGC 3201

    Get PDF
    We utilize multi-epoch MUSE spectroscopy to study binaries in the core of NGC 3201. Our sample consists of 3553 stars with 54883 spectra in total comprising 3200 main-sequence stars up to 4 magnitudes below the turn-off. Each star in our sample has between 3 and 63 (with a median of 14) reliable radial velocity (RV) measurements within five years of observations. We introduce a statistical method to determine the probability of a star showing RV variations based on the whole inhomogeneous RV sample. Using HST photometry and an advanced dynamical MOCCA simulation of this specific GC we overcome observational biases that previous spectroscopic studies had to deal with. This allows us to infer a binary frequency in the MUSE FoV and enables us to deduce the underlying true binary frequency of (6.75+-0.72) % in NGC 3201. The comparison of the MUSE observations with the MOCCA simulation suggests a significant fraction of primordial binaries. We can also confirm a radial increase of the binary fraction towards the GC centre due to mass segregation. We discovered that in our sample at least (57.5+-7.9) % of blue straggler stars (BSS) are in a binary system. For the first time in a study of GCs, we were able to fit Keplerian orbits to a significant sample of 95 binaries. We present the binary system properties of eleven BSS and show evidence that two BSS formation scenarios, the mass transfer in binary (or triple) star systems and the coalescence due to binary-binary interactions, are present in our data. We also describe the binary and spectroscopic properties of four sub-subgiant (or red straggler) stars. Furthermore, we discovered two new black hole (BH) candidates with minimum masses (Msini) of (7.68+-0.50) M_sun, (4.4+-2.8) M_sun, and refine the minimum mass estimate on the already published BH to (4.53+-0.21) M_sun. These BHs are consistent with an extensive BH subsystem hosted by NGC 3201

    A terrestrial planet candidate in a temperate orbit around Proxima Centauri

    Get PDF
    At a distance of 1.295 parsecs, the red dwarf Proxima Centauri (α Centauri C, GL 551, HIP 70890 or simply Proxima) is the Sun’s closest stellar neighbour and one of the best-studied low-mass stars. It has an effective temperature of only around 3,050 kelvin, a luminosity of 0.15 per cent of that of the Sun, a measured radius of 14 per cent of the radius of the Sun and a mass of about 12 per cent of the mass of the Sun. Although Proxima is considered a moderately active star, its rotation period is about 83 days and its quiescent activity levels and X-ray luminosity are comparable to those of the Sun. Here we report observations that reveal the presence of a small planet with a minimum mass of about 1.3 Earth masses orbiting Proxima with a period of approximately 11.2 days at a semi-major-axis distance of around 0.05 astronomical units. Its equilibrium temperature is within the range where water could be liquid on its surface

    A stellar census in globular clusters with MUSE: A spectral catalogue of emission-line sources

    No full text
    Aims. Globular clusters produce many exotic stars due to a much higher frequency of dynamical interactions in their dense stellar environments. Some of these objects were observed together with several hundred thousand other stars in our MUSE survey of 26 Galactic globular clusters. Assuming that at least a few exotic stars have exotic spectra (i.e. spectra that contain emission lines), we can use this large spectroscopic data set of over a million stellar spectra as a blind survey to detect stellar exotica in globular clusters. Methods. To detect emission lines in each spectrum, we modelled the expected shape of an emission line as a Gaussian curve. This template was used for matched filtering on the differences between each observed 1D spectrum and its fitted spectral model. The spectra with the most significant detections of Hα emission are checked visually and cross-matched with published catalogues. Results. We find 156 stars with Hα emission, including several known cataclysmic variables (CV) and two new CVs, pulsating variable stars, eclipsing binary stars, the optical counterpart of a known black hole, several probable sub-subgiants and red stragglers, and 21 background emission-line galaxies. We find possible optical counterparts to 39 X-ray sources, as we detected Hα emission in several spectra of stars that are close to known positions of Chandra X-ray sources. This spectral catalogue can be used to supplement existing or future X-ray or radio observations with spectra of potential optical counterparts to classify the sources

    Central kinematics of the Galactic globular cluster M80

    No full text
    International audienceWe use spectra observed with the integral-field spectrograph Multi Unit Spectroscopic Explorer (MUSE) to reveal the central kinematics of the Galactic globular cluster Messier 80 (M80, NGC 6093). Using observations obtained with the recently commissioned narrow-field mode of MUSE, we are able to analyse 932 stars in the central 7.5 arcsec by 7.5 arcsec of the cluster for which no useful spectra previously existed. Mean radial velocities of individual stars derived from the spectra are compared to predictions from axisymmetric Jeans models, resulting in radial profiles of the velocity dispersion, the rotation amplitude, and the mass-to-light ratio. The new data allow us to search for an intermediate-mass black hole (IMBH) in the centre of the cluster. Our Jeans model finds two similarly probable solutions around different dynamical cluster centres. The first solution has a centre close to the photometric estimates available in the literature and does not need an IMBH to fit the observed kinematics. The second solution contains a location of the cluster centre that is offset by about 2.4 arcsec from the first one and it needs an IMBH mass of 4600−1400+1700 M⊙4600^{+1700}_{-1400}~\text{M}_\odot {}. N-body models support the existence of an IMBH in this cluster with a mass of up to 6000 M⊙ in this cluster, although models without an IMBH provide a better fit to the observed surface brightness profile. They further indicate that the cluster has lost nearly all stellar-mass black holes. We further discuss the detection of two potential high-velocity stars with radial velocities of 80–90 km s−1\text{km}\, \text{s}^{-1} relative to the cluster mean

    A stellar census in globular clusters with MUSE

    Get PDF
    Aims. We use the spectra of more than 30 000 red giant branch (RGB) stars in 25 globular clusters (GC), obtained within the MUSE survey of Galactic globular clusters, to calibrate the Ca I
    corecore