775 research outputs found

    Genetic Targeting of ERK1 Suggests a Predominant Role for ERK2 in Murine Pain Models

    Get PDF
    The extracellular signal-regulated kinase (ERK) isoforms, ERK1 and ERK2, are believed to be key signaling molecules in nociception and nociceptive sensitization. Studies utilizing inhibitors targeting the shared ERK1/2 upstream activator, mitogen-activated protein kinase kinase (MEK), and transgenic mice expressing a dominant negative form of MEK have established the importance of ERK1/2 signaling. However, these techniques do not discriminate between ERK1 and ERK2. To dissect the function of each isoform in pain, we utilized mice with a targeted genetic deletion of ERK1 (ERK1 KO) to test the hypothesis that ERK1 is required for behavioral sensitization in rodent pain models. Despite activation (phosphorylation) of ERK1 following acute noxious stimulation and in models of chronic pain, we found that ERK1 was not required for formalin-induced spontaneous behaviors, complete Freund’s adjuvant-induced heat and mechanical hypersensitivity, and spared nerve injury-induced mechanical hypersensitivity. However, ERK1 deletion did delay formalin-induced long-term heat hypersensitivity, without affecting formalin-induced mechanical hypersensitivity, suggesting that ERK1 partially shapes long-term responses to formalin. Interestingly, ERK1 deletion resulted in elevated basal ERK2 phosphorylation. However, this did not appear to influence nociceptive processing, since inflammation-induced ERK2 phosphorylation and pERK1/2 immunoreactivity in spinal cord were not elevated in ERK1 KO mice. Additionally, systemic MEK inhibition with SL327 attenuated formalin-induced spontaneous behaviors similarly in WT and ERK1 KO mice, indicating that unrelated signaling pathways do not functionally compensate for the loss of ERK1. Taken together, these results suggest that ERK1 plays a limited role in nociceptive sensitization and supports a predominant role for ERK2 in these processes

    Linking Remotely Sensed Carbon and Water Use Efficiencies with In Situ Soil Properties

    Get PDF
    The capacity of terrestrial ecosystems to sequester carbon dioxide (CO2 ) from the atmosphere is expected to be altered by climate change and CO2 fertilization, but this projection is limited by our understanding of how the soil system interacts with plants. Understanding the soil–vegetation interactions is essential to assess the magnitude and response of terrestrial ecosystems to the changing climate. Here, we used soil profile and satellite data to explore the role that soil properties play in regulating water and carbon use by plants. Data obtained for 19 terrestrial ecosystem sites in a warm temperate and humid climate were used to investigate the relationship between remotely sensed data and soil physical and chemical properties. Classification and regression tree results showed that in situ soil carbon isotope (δ 13C), and soil order were significant predictors (r2 = 0.39, mean absolute error (MAE) = 0 of 0.175 gC/KgH2O) of remotely sensed water use efficiency (WUE) based on the Moderate Resolution Imaging Spectroradiometer (MODIS). Soil extractable calcium (Ca), and land cover type were significant predictors of remotely sensed carbon use efficiency (CUE) based on MODIS and Landsat data-(r2 = 0.64–0.78, MAE = 0.04–0.06). We used gross primary productivity (GPP) derived from solar-induced fluorescence (SIF) data, based on the Orbiting Carbon Observatory-2 (OCO-2), to calculate WUE and CUE (referred to as WUESIF and CUESIF, respectively) for our study sites. The regression tree analysis revealed that soil organic matter and soil extractable magnesium (Mg), δ 13C, and soil silt content were the important predictors of both WUESIF (r2 = 0.19, MAE = 0.64 gC/KgH2O) and CUESIF (r2 = 0.45, MAE = 0.1), respectively. Our results revealed the importance of soil extractable Ca, soil carbon (S13C is a facet of soil carbon content), and soil organic matter predicting CUE and WUE. Insights gained from this study highlighted the importance of biotic and abiotic factors regulating plant and soil interactions. These types of data are timely and critical for accurate predictions of how terrestrial ecosystems respond to climate change

    Responses to Dehydration in the One-Humped Camel and Effects of Blocking the Renin-Angiotensin System

    Get PDF
    Our objectives were to compare the levels of circulating electrolytes, hormones, and renal function during 20 days of dehydration in camels versus the level in non-dehydrated camels and to record the effect of blocking angiotensin II AT1 receptors with losartan during dehydration. Dehydration induced significant increments in serum sodium, creatinine, urea, a substantial fall in body weight, and a doubling in plasma arginine vasopressin (AVP) levels. Plasma aldosterone, however, was unaltered compared with time-matched controls. Losartan significantly enhanced the effect of dehydration to reduce body weight and increase serum levels of creatinine and urea, whilst also impairing the rise in plasma AVP and reducing aldosterone levels. We conclude that dehydration in the camel induces substantial increments in serum sodium, creatinine, urea and AVP levels; that aldosterone levels are altered little by dehydration; that blockade of angiotensin II type 1 receptors enhances the dehydration-induced fall in body weight and increase in serum creatinine and urea levels whilst reducing aldosterone and attenuating the rise in plasma AVP

    ERK2 alone drives inflammatory pain but cooperates with ERK1 in sensory neuron survival

    Get PDF
    Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are highly homologous yet distinct components of signal transduction pathways known to regulate cell survival and function. Recent evidence indicates an isoform-specific role for ERK2 in pain processing and peripheral sensitization. However, the function of ERK2 in primary sensory neurons has not been directly tested. To dissect the isoform-specific function of ERK2 in sensory neurons, we used mice with Cre-loxP-mediated deletion of ERK2 in Na(v)1.8(+) sensory neurons that are predominantly nociceptors. We find that ERK2, unlike ERK1, is required for peripheral sensitization and cold sensation. We also demonstrate that ERK2, but not ERK1, is required to preserve epidermal innervation in a subset of peptidergic neurons. Additionally, deletion of both ERK isoforms in Na(v)1.8(+) sensory neurons leads to neuron loss not observed with deletion of either isoform alone, demonstrating functional redundancy in the maintenance of sensory neuron survival. Thus, ERK1 and ERK2 exhibit both functionally distinct and redundant roles in sensory neurons. SIGNIFICANCE STATEMENT ERK1/2 signaling affects sensory neuron function and survival. However, it was not clear whether ERK isoform-specific roles exist in these processes postnatally. Previous work from our laboratory suggested either functional redundancy of ERK isoforms or a predominant role for ERK2 in pain; however, the tools to discriminate between these possibilities were not available at the time. In the present study, we use new genetic knock-out lines to demonstrate that ERK2 in sensory neurons is necessary for development of inflammatory pain and for postnatal maintenance of peptidergic epidermal innervation. Interestingly, postnatal loss of both ERK isoforms leads to a profound loss of sensory neurons. Therefore, ERK1 and ERK2 display both functionally distinct and redundant roles in sensory neurons

    The Genome of C57BL/6J Eve , the Mother of the Laboratory Mouse Genome Reference Strain.

    Get PDF
    Isogenic laboratory mouse strains enhance reproducibility because individual animals are genetically identical. For the most widely used isogenic strain, C57BL/6, there exists a wealth of genetic, phenotypic, and genomic data, including a high-quality reference genome (GRCm38.p6). Now 20 years after the first release of the mouse reference genome, C57BL/6J mice are at least 26 inbreeding generations removed from GRCm38 and the strain is now maintained with periodic reintroduction of cryorecovered mice derived from a single breeder pair, aptly named Adam and Eve. To provide an update to the mouse reference genome that more accurately represents the genome of today\u27s C57BL/6J mice, we took advantage of long read, short read, and optical mapping technologies to generate a de novo assembly of the C57BL/6J Eve genome (B6Eve). Using these data, we have addressed recurring variants observed in previous mouse genomic studies. We have also identified structural variations, closed gaps in the mouse reference assembly, and revealed previously unannotated coding sequences. This B6Eve assembly explains discrepant observations that have been associated with GRCm38-based analyses, and will inform a reference genome that is more representative of the C57BL/6J mice that are in use today

    Poxvirus Protein N1L Targets the I-κB Kinase Complex, Inhibits Signaling to NF-κB by the Tumor Necrosis Factor Superfamily of Receptors, and Inhibits NF-κB and IRF3 Signaling by Toll-like Receptors

    Get PDF
    Poxviruses encode proteins that suppress host immune responses, including secreted decoy receptors for pro-inflammatory cytokines such as interleukin-1 (IL-1) and the vaccinia virus proteins A46R and A52R that inhibit intracellular signaling by members of the IL-1 receptor (IL-1R) and Toll-like receptor (TLR) family. In vivo, the TLRs mediate the innate immune response by serving as pathogen recognition receptors, whose oligomerized intracellular Toll/IL-1 receptor (TIR) domains can initiate innate immune signaling. A family of TIR domain-containing adapter molecules transduces signals from engaged receptors that ultimately activate NF-kappaB and/or interferon regulatory factor 3 (IRF3) to induce pro-inflammatory cytokines. Data base searches detected a significant similarity between the N1L protein of vaccinia virus and A52R, a poxvirus inhibitor of TIR signaling. Compared with other poxvirus virulence factors, the poxvirus N1L protein strongly affects virulence in vivo; however, the precise target of N1L was previously unknown. Here we show that N1L suppresses NF-kappaB activation following engagement of Toll/IL-1 receptors, tumor necrosis factor receptors, and lymphotoxin receptors. N1L inhibited receptor-, adapter-, TRAF-, and IKK-alpha and IKK-beta-dependent signaling to NF-kappaB. N1L associated with several components of the multisubunit I-kappaB kinase complex, most strongly associating with the kinase, TANK-binding kinase 1 (TBK1). Together these findings are consistent with the hypothesis that N1L disrupts signaling to NF-kappaB by Toll/IL-1Rs and TNF superfamily receptors by targeting the IKK complex for inhibition. Furthermore, N1L inhibited IRF3 signaling, which is also regulated by TBK1. These studies define a role for N1L as an immunomodulator of innate immunity by targeting components of NF-kappaB and IRF3 signaling pathways

    Detection of a Single Identical Cytomegalovirus (CMV) Strain in Recently Seroconverted Young Women

    Get PDF
    Infection with multiple CMV strains is common in immunocompromised hosts, but its occurrence in normal hosts has not been well-studied.We analyzed CMV strains longitudinally in women who acquired CMV while enrolled in a CMV glycoprotein B (gB) vaccine trial. Sequencing of four variable genes was performed in samples collected from seroconversion and up to 34 months thereafter.199 cultured isolates from 53 women and 65 original fluids from a subset of 19 women were sequenced. 51 women were infected with one strain each without evidence for genetic drift; only two women shed multiple strains. Genetic variability among strains increased with the number of sequenced genetic loci. Nevertheless, 13 of 53 women proved to be infected with an identical CMV strain based on sequencing at all four variable genes. CMV vaccine did not alter the degree of genetic diversity amongst strains.Primary CMV infection in healthy women nearly always involves shedding of one strain that remains stable over time. Immunization with CMVgB-1 vaccine strain is not selective against specific strains. Although 75% of women harbored their unique strain, or a strain shared with only one other woman, 25% shared a single common strain, suggesting that this predominant strain with a particular combination of genetic loci is advantageous in this large urban area

    Male mating biology

    Get PDF
    Before sterile mass-reared mosquitoes are released in an attempt to control local populations, many facets of male mating biology need to be elucidated. Large knowledge gaps exist in how both sexes meet in space and time, the correlation of male size and mating success and in which arenas matings are successful. Previous failures in mosquito sterile insect technique (SIT) projects have been linked to poor knowledge of local mating behaviours or the selection of deleterious phenotypes during colonisation and long-term mass rearing. Careful selection of mating characteristics must be combined with intensive field trials to ensure phenotypic characters are not antagonistic to longevity, dispersal, or mating behaviours in released males. Success has been achieved, even when colonised vectors were less competitive, due in part to extensive field trials to ensure mating compatibility and effective dispersal. The study of male mating biology in other dipterans has improved the success of operational SIT programmes. Contributing factors include inter-sexual selection, pheromone based attraction, the ability to detect alterations in local mating behaviours, and the effects of long-term colonisation on mating competitiveness. Although great strides have been made in other SIT programmes, this knowledge may not be germane to anophelines, and this has led to a recent increase in research in this area
    • …
    corecore