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Neurobiology of Disease

ERK2 Alone Drives Inflammatory Pain But Cooperates with
ERK1 in Sensory Neuron Survival

Daniel E. O’Brien,1* X Benedict J. Alter,1* Maiko Satomoto,1 Clinton D. Morgan,1 Steve Davidson,1 Sherri K. Vogt,1

X Megan E. Norman,1 Graydon B. Gereau,1 Joseph A. Demaro III,1 Gary E. Landreth,2 Judith P. Golden,1

and X Robert W. Gereau IV1

1Washington University Pain Center, Department of Anesthesiology, St. Louis, Missouri 63110, and 2Neuroscience Department, Case Western Reserve
University, Cleveland, Ohio 44106

Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are highly homologous yet distinct components of signal transduction pathways
known to regulate cell survival and function. Recent evidence indicates an isoform-specific role for ERK2 in pain processing and periph-
eral sensitization. However, the function of ERK2 in primary sensory neurons has not been directly tested. To dissect the isoform-specific
function of ERK2 in sensory neurons, we used mice with Cre-loxP-mediated deletion of ERK2 in Nav1.8 � sensory neurons that are
predominantly nociceptors. We find that ERK2, unlike ERK1, is required for peripheral sensitization and cold sensation. We also
demonstrate that ERK2, but not ERK1, is required to preserve epidermal innervation in a subset of peptidergic neurons. Additionally,
deletion of both ERK isoforms in Nav1.8 � sensory neurons leads to neuron loss not observed with deletion of either isoform alone,
demonstrating functional redundancy in the maintenance of sensory neuron survival. Thus, ERK1 and ERK2 exhibit both functionally
distinct and redundant roles in sensory neurons.
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Introduction
Extracellular signal-regulated kinases 1/2 (ERK1/2) are mitogen-
activated protein kinases that integrate signals from growth fac-

tor receptors, ion channels, and G-protein coupled receptors.
Activated ERK1/2 phosphorylate and activate downstream effec-
tors that support cell survival and alter cell function (Roskoski,
2012). Previously, ERK1 and ERK2 were presumed to be func-
tionally redundant given their 84% sequence homology, shared
upstream activators, and similar substrate specificity (Boulton
and Cobb, 1991; Boulton et al., 1991). However, genetic deletion
of either ERK1 or ERK2 leads to distinct phenotypes, suggesting
isoform-specific functions (Pagès et al., 1999; Mazzucchelli et
al., 2002; Saba-El-Leil et al., 2003; Nekrasova et al., 2005; Satoh
et al., 2007, 2011a; Newbern et al., 2008; Samuels et al., 2008; Alter
et al., 2010; Fyffe-Maricich et al., 2011). Still, tissue-specific loss
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Significance Statement

ERK1/2 signaling affects sensory neuron function and survival. However, it was not clear whether ERK isoform-specific roles exist
in these processes postnatally. Previous work from our laboratory suggested either functional redundancy of ERK isoforms or a
predominant role for ERK2 in pain; however, the tools to discriminate between these possibilities were not available at the time. In
the present study, we use new genetic knock-out lines to demonstrate that ERK2 in sensory neurons is necessary for development
of inflammatory pain and for postnatal maintenance of peptidergic epidermal innervation. Interestingly, postnatal loss of both
ERK isoforms leads to a profound loss of sensory neurons. Therefore, ERK1 and ERK2 display both functionally distinct and
redundant roles in sensory neurons.
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of both ERK1 and ERK2 leads to novel phenotypes that are not
observed in single knock-out animals, implying other redundant
functions (Newbern et al., 2011; Satoh et al., 2011b; Yasuda et al.,
2011). Additional studies must address whether ERK1 and ERK2
are functionally redundant in ERK1/2-dependent processes.

Behavioral hypersensitivity after inflammation is mediated by
ERK1/2. Following noxious stimulation or inflammation, phos-
phorylated (activated) ERK1/2 (pERK1/2) is observed in primary
afferents, spinal cord dorsal horn, and brain regions involved in
pain processing (Ji et al., 1999; Dai et al., 2002; Obata et al., 2003,
2004; Carrasquillo and Gereau, 2007). Inhibition of the upstream
kinase, mitogen-activated protein kinase kinase (MEK), can both
reduce and reverse inflammation-induced hypersensitivity (Ji et
al., 2002; Obata et al., 2003; Zhuang et al., 2004; Karim et al.,
2006). However, these experimental approaches cannot identify
isoform-specific or cell type-specific roles of ERK1/2 in pain.

Recent studies have tried to address these questions. Although
ERK1 is phosphorylated after injury, global ERK1 expression is
dispensable for inflammatory and neuropathic pain (Alter et al.,
2010). This suggests either functional redundancy of ERK iso-
forms or a predominant role of ERK2 in pain signaling. Recent
studies support the latter hypothesis that, in the CNS, ERK2 plays
a predominant role in behavioral sensitization following injury.
Intrathecal delivery of neuron-targeted ERK2 siRNA mitigated
inflammation-induced hypersensitivity (Xu et al., 2008). Moreover,
conditional deletion of ERK2 in CNS neurons and astrocytes atten-
uated the development of inflammatory and neuropathic pain (Ot-
subo et al., 2012). However, neither of these studies addresses the
role of ERK2 in sensory neurons or the functionally redundant roles
of ERK1 and ERK2 in pain pathways.

In this study, we evaluated the role of ERK1 and ERK2 in
Nav1.8� sensory neurons that are predominantly nociceptors. Us-
ing postnatal, conditional ERK2 deletion in Nav1.8� sensory neu-
rons (NsERK2 KO) (Agarwal et al., 2004), we find that sensory
neuron ERK2 is necessary for development of inflammation-
induced hypersensitivity, cold sensation, and for postnatal main-
tenance of a subset of peptidergic epidermal innervation.
Unexpectedly, postnatal loss of both ERK isoforms in Nav1.8�

neurons leads to a loss of sensory neurons that is not observed in
either single isoform knock-out animal. Therefore, sensory neu-
ron ERK2 drives peripheral sensitization, whereas expression of
at least one ERK isoform is required for postnatal sensory neuron
survival.

Materials and Methods
Animals. All experiments were performed in accordance with National
Institute of Health guidelines and were approved by the Animal Care and
Use Committee of Washington University School of Medicine. Mice
were housed in cages maintained on a 12 h light/dark cycle with ad
libitum access to food and water. ERK1-targeted deletion was accom-
plished by using homologous recombination to replace exons 1– 6 with a
Neo cassette as previously described (ERK1 �/�) (Nekrasova et al., 2005).
These mice were backcrossed �10 times to a C57BL/6 background. Mice
heterozygous for the ERK1 mutation were crossed to obtain ERK1 �/�

(ERK1 KO) and ERK1 �/� (WT) littermates. ERK2 conditional deletion
in Nav1.8 � sensory neurons (NsERK2 KO) was accomplished using a
Cre-LoxP system. The mapk1 gene encoding ERK2 was flanked with loxP
sites (ERK2 f/f) around exon 2, which, upon Cre-mediated excision, pro-
duces a null allele (Samuels et al., 2008). These mice were crossed with a
BAC transgenic line expressing Cre recombinase under the Nav1.8 pro-
moter (Nav1.8-cre) (Agarwal et al., 2004). Male ERK2 f/f; Nav1.8-cre mice
were crossed with ERK2 f/f female mice. Through this cross, we obtained
ERK2 f/f;Nav1.8-cre (NsERK2 KO) and ERK2 f/f (control) littermates.
NsERK2 KO mice were backcrossed �10 times with C57BL/6 mice to

create a mixed Bl6/C57;129 background. ERK1 KO mice were crossed
with NsERK2 KO mice to create a mixed Bl6/C57;129 line of sensory-
neuron-specific double knock-out mice wherein ERK1 is deleted globally
and ERK2 is deleted specifically in Nav1.8 � sensory neurons. This sen-
sory neuron-specific ERK1/2 double knock-out mouse (ERK1 �/�;
ERK2 f/f; Nav1.8-cre) is referred throughout the paper as ERK dKO mice
for simplicity of nomenclature. Male ERK1 �/�;ERK2 f/f;Nav1.8-cre mice
were crossed with female ERK1 �/�;ERK2 f/f mice to obtain the following
experimental mice as littermates: ERK1 �/�;ERK2 f/f (ERK1 KO),
ERK1 �/�;ERK2 f/f (WT), ERK1 �/�;ERK2 f/f; Nav1.8-cre (NsERK2 KO),
and ERK1 �/�;ERK2 f/f; Nav1.8-cre (ERK dKO). For all studies, littermate
controls were used and experimenters were blinded to genotype.

Western blotting. Sample preparation and immunoblotting were done
as previously described (Alter et al., 2010). Mice were acclimated for 2–3
h in behavior chambers. Mice were killed using a guillotine, and spinal
cord was extracted via hydraulic extrusion. The lumbar enlargement of
the spinal cord was separated and flash frozen on dry ice. Thoracic and
lumbar DRGs were isolated, pooled, and flash frozen. Frozen spinal cord
and DRGs were homogenized using a Dounce homogenizer in ice-cold
buffer containing 20 mM Tris, pH 7.5, 1 mM EDTA, 1 mM Na4P2O7, 25
�g/ml aprotinin (Sigma-Aldrich), 25 �g/ml leupeptin (Sigma-Aldrich),
100 �M PMSF (Roche Applied Science), 1 �g/ml microcystin LR (Enzo
Life Science), and 1 mM Na3VO4 (Sigma-Aldrich) in Milli-Q distilled
water. A BCA assay (Pierce Biotechnology) was used to measure protein
concentration with a SmartSpec 3000 spectrophotometer (Bio-Rad).

Immunoblotting experiments were performed by loading 10 �g of
protein homogenates into an SDS-PAGE gel (Bio-rad) for protein size
separation. Protein homogenates were loaded into precast Tris-HCl 4%
stacking and 10% separating polyacrylamide midi-gels (Bio-Rad). Fol-
lowing size separation on a SDS-PAGE gel, protein was transferred from
the gel to a nitrocellulose membrane using a wet transfer system (Bio-
Rad). Odyssey blocking buffer (LI-COR Biosciences) was used to block
the membrane for 1 h at room temperature. The membrane was then
incubated in primary antibodies diluted in Odyssey blocking buffer for
1 h at room temperature. The following primary antibodies were diluted
in Odyssey blocking buffer (LI-COR Biosciences) and used for immuno-
blotting experiments: anti-pERK1/2 (mouse monoclonal, 1:1000; Cell
Signaling Technology), anti-ERK1/2 (rabbit polyclonal, 1:1000; Cell Sig-
naling Technology), anti-�-tubulin (mouse monoclonal, 1:10,000,
Sigma), and mouse anti-actin (mouse monoclonal, 1:2000; Sigma-
Aldrich). Following several washes, membranes were incubated for 1 h in
the fluorescently tagged secondary antibodies, goat anti-rabbit IRDye800
(1:20,000; LI-COR Biosciences) and goat anti-mouse AlexaFluor-680
(1:20,000; Invitrogen) diluted in Odyssey blocking buffer (LI-COR Bio-
sciences). Odyssey Infrared Fluorescence Imaging System (LI-COR Bio-
sciences) was used to detect antibody binding at 700 nm (pERK1/2,
�-tubulin, and actin) and 800 nm (ERK1/2) wavelength fluorescent
emissions. Densitometry was used quantify band intensity using the
Odyssey Infrared Fluorescence Imaging System software (LI-COR
Biosciences).

Behavioral studies. Male (see Figs. 1, 2, 3, 4) or female (see Figs. 6, 7)
littermate mice were tested between 7 and 10 weeks of age during their
light cycle. Behavioral experiments were performed in isolated rooms
held at room temperature (�25°C) with white noise on. Before behav-
ioral testing, mice were acclimated to the testing area for at least 2 h.
During thermal gradient experiments, mice were placed in individual
lanes separated to prevent mice from seeing each other. For responses to
thermal and mechanical stimuli, mice were placed into individual, Plexi-
glas behavioral chambers (width, 10 cm; length, 10 cm; height, 15 cm)
separated by opaque dividers to prevent mice from seeing each other
during testing.

Thermal gradient. Naive mice were assessed for thermotaxis behavior
on a thermal gradient ranging from 13°C to 49°C as described previously
(Dhaka et al., 2007). Mice were acclimated to the room in their home
cages before each day of testing. On the first day, mice were allowed to
move freely for 2 h on the apparatus with no temperature gradient. On
the day of testing, the gradient was turned on during acclimation of the
mice in their home cage. Before testing, the temperatures of 20 equally
sized zones were determined by averaging the temperature at the zone’s
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edges. Mice were then allowed to freely move on the gradient over the
next 2 h. On both days, Anymaze software (Stoelting) continuously
tracked the center of each mouse to measure the time spent in each zone
during the 2 h trial. Data were averaged for each genotype and graphed as
mean � SEM of time spent in each zone over the entire 2 h test.

Extended cold plantar assay. Naive mice were tested for their response
to a cold stimulus (dry ice) applied to the glass plate directly underneath
the plantar area of their hindpaw as done previously (Brenner et al., 2012,
2014b). For all experiments, mice were placed in behavioral chambers on
1⁄4-inch thick glass purchased from Stemmerich. A cold stimulus was
applied to the glass underneath the hindpaw using powdered dry ice
packed into a modified 3 ml syringe (BD Biosciences). Mirrors under-
neath the glass were used to accurately target the stimulus. Mice were
assessed for their paw withdrawal latency to this cold stimulus every 7
min alternating between paws for each mouse. Only awake, still mice
were tested. A 20 s cutoff was used to avoid tissue damage. Three to five
measurements were taken using a stopwatch to determine average paw
withdrawal latencies for each mouse.

The glass plate was either maintained at room temperature or cooled
to either 17°C or 12°C. To uniformly cool the glass, either wet (17°C) or
dry ice (12°C) was placed in two custom-built aluminum boxes (4.5
inches wide and 3 inches tall with a lid) that stretched the length of the
glass on either side of the behavioral chambers (Brenner et al., 2014b). To
cool the plate to 17°C, wet ice was added to these aluminum boxes posi-
tioned �0.25 inches away from the behavioral chambers on either side.
To cool the plate to 12°C, dry ice pellets were added to the aluminum
boxes that were positioned �1.25 inches away from the behavioral
chambers on either side. Once the plate reached the desired temperature
(within �1 h), the mice were placed in their behavioral chambers and
acclimated there for at least 2 h. The temperature was continuously mon-
itored at the middle of the plate using a 24P T-type filament thermocou-
ple probe (Physitemp Instruments) and logged by a EA15 Data-Logging
Dual Input Thermometer (Extech Instruments). The glass temperature
was modified by either adding more ice or adjusting the position of
the aluminum containers with respect to the behavioral chambers. Mice
were only tested when the plate temperature was within �1.0°C of the
target temperature. Mice were tested on room temperature glass on the
first day, and 17°C and 12°C glass on subsequent days.

Hargreaves’ test. Mice were evaluated for their response to a radiant
heat source (Hargreaves apparatus) applied to the plantar surface of their
hindpaw as previously described (Alter et al., 2010). Mice were placed in
behavioral chambers on a prewarmed (�30°C) glass plate of 390G Plan-
tar Test Apparatus (IITC Life Sciences). Following acclimation on the
apparatus, paw withdrawal latencies were determined using a radiant
heat source stimulus set at a 14%–17% active intensity and 3%–5% in-
active intensity. A 20 s cutoff was used to avoid tissue damage. For base-
line paw withdrawal latencies, five independent measurements on each
paw were performed separated by at least 30 min on the same paw.
Following injection of inflammatory or algogenic compounds, two inde-
pendent measurements per hour were taken for each paw and averaged
for hourly time points. On each subsequent day, three independent mea-
surements were acquired for each paw and averaged for the day’s mean
value. Data were then converted to and graphed as a percentage of base-
line paw withdrawal latency.

von Frey. Mice were tested for their 50% paw withdrawal threshold
using calibrated von Frey filaments (North Coast Medical) as previously
described (Alter et al., 2010). Mice were acclimated in behavioral cham-
bers on a wire mesh for at least 2 h. During testing, filaments were pressed
against the area between the anterior and posterior footpads of the hind-
paw for �1 s. Awake, still mice were tested five times with each filament
at a rate of �0.5 Hz starting with the lightest filament (0.08 g). Testing
progressed to heavier filaments until a filament evoked a withdrawal
response in at least three of five applications and was thus considered to
be the 50% paw withdrawal threshold. A response was counted when the
mouse withdrew its hindpaw from the mesh immediately following the
filament application. For baselines, three to five independent measure-
ments were taken for each paw separated by at least 30 min on the same
paw. Following NGF-induced and complete Freund’s adjuvant (CFA)-
induced inflammation, paw withdrawal thresholds were determined

hourly after injury from a single measurement. On subsequent days,
three independent measurements were acquired and averaged for the
day’s mean value. Data were then graphed as the paw withdrawal
threshold.

Radiant tail flick assay. Mice were assessed for the tail withdrawal
latency to a radiant heat source directed at their tail. Mice were restrained
in a 50 ml conical tube equipped with a stopper and air holes. The
mouse’s tail was placed under radiant heat source of the Tail Flick Meter
(IITC) maintained at an inactive intensity of 0%. When mice reached a
still, awake state, the radiant heat source was applied to the tail with an
active intensity of 50%. Once the mouse flicked its tail away from the
radiant heat source, the trial was stopped and the tail flick latency was
recorded. Care was taken to avoid visibly injured areas present on mice.
Three independent measures were recorded at least 15 min apart.

Randall-Selitto tail pinch assay. Mice were assessed for the sensitivity to
a ramping mechanical force directed on their tail. Mice were restrained in
a 50 ml conical tube equipped with a stopper and air holes. The mouse’s
tail was placed under the pusher on an Analgesia-Meter (Ugo Basile).
When mice reached a still, awake state, the instrument was used to apply
a force on the tail increasing at a rate of 16 g/s. The mechanical stimulus
was stopped manually when the mouse began to struggle, and the cumu-
lative force (in grams) needed to evoke a response was recorded as the tail
withdrawal threshold. Three independent trials were performed at least
15 min apart starting at a distal region �1 mm from the end of the tail
and moving �1 mm proximally for subsequent measures. Care was
taken to avoid visibly injured areas present on mice.

Formalin-induced spontaneous behaviors. To assess formalin-induced
spontaneous behaviors, mice were given an intraplantar injection of 5%
formalin and subsequently assessed for time spent in spontaneous pain
behavior, including licking, lifting, and flicking. Mice were first accli-
mated in behavioral chambers for at least 2 h. Mice were then injected
subcutaneously with 10 �l of 5% formalin (Sigma-Aldrich) diluted in
0.9% NaCl into the plantar surface of the hindpaw. Mice were immedi-
ately returned to their behavior chamber and the experimenter exited the
room. A video was recorded from below using a webcam (Logitech) with
resolution set at 960 � 720 for 1 h following injection. Total time spent
licking, lifting, and flicking the injured paw was assessed post hoc from the
videos by a blinded experimenter using a stopwatch. Total time spent in
these spontaneous behaviors was binned every 5 min for the hour follow-
ing formalin injection. Time spent in spontaneous behavior was also
parsed into Phase 1 (0 –10 min after injection) and Phase 2 (10 – 60 min
after injection).

Inflammation- and algogen-induced hypersensitivity. Inflammatory
and algogenic compounds were injected subcutaneously into the plantar
surface of the hindpaw. CFA-induced inflammation was caused by a 10
�l injection of 1 mg/ml CFA (Sigma-Aldrich). NGF-induced inflamma-
tion was caused by a 10 �l injection of 0.2 �g NGF diluted in 0.9% NaCl.
As in spontaneous behavior experiments, 10 �l of 5% formalin (Sigma-
Aldrich) diluted in 0.9% NaCl was injected to induce hypersensitivity.
Mustard oil-induced hypersensitivity was caused by an injection of 10 �l
of 0.75% mustard oil diluted in light mineral oil. Hypersensitivity follow-
ing each algogen was measured as described above for thermal (Har-
greaves’ test) and mechanical (von Frey) stimuli.

CFA-induced paw edema. Paw inflammation following CFA injection
was monitored in both ERK1 KO and NsERK2 KO mice compared with
control littermates. As in behavioral experiments, mice were habituated
for 2 h in individual behavioral chambers before testing. Following ha-
bituation, 150 mm stainless dial calipers (Chicago Brand) were used to
measure paw thickness (in millimeters) to establish a baseline reading.
Mice then received an intraplantar injection of 10 �l injection of 1 mg/ml
CFA (Sigma-Aldrich). CFA-induced inflammation was monitored by
measuring paw thickness (in millimeters) over the same time course used
in the CFA-induced behavioral hypersensitivity assays. Data were
graphed as paw thickness (in millimeters).

Accelerating rotarod. Untrained NsERK2 KO and control (ERK2 f/f)
littermate mice were assessed for their gross motor function using an
accelerating Rotarod (Ugo Basile). Five consecutive trials were per-
formed with at least 5 min between trials. Latency to fall or roll on the
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Rotarod was measured as the apparatus accelerated from 4 to 40 rpm
over 5 min.

Open field. Locomotion was assessed using an open field equipped
with a Versamax Animal Activity Monitoring System (AccuScan Instru-
ments). Before testing, mice were habituated to the room in their home
cages for at least 1 h. Naive NsERK2 KO and control (ERK2 f/f) littermates
were then placed in the open field during individual trials and allowed to
freely explore after the experimenter exited the room. The number of
photobeam breaks was calculated to measure the horizontal activity of
mice in the chamber (42 � 42 � 30 cm, length � width � height) during
the 1-h-long trial.

Immunohistochemistry (IHC). Tissues for IHC experiments were col-
lected as previously described (Golden et al., 2010). Tissue from 7- to
10-week-old male littermates was fixed with either Zamboni’s fixative
(footpads) or via transcardial perfusion with 4% PFA (all other tissue).
Following rinsing with PBS, tissue was cryoprotected in 30% sucrose. For
Ret immunostaining, DRGs were fresh frozen. Tissue was sectioned us-
ing a cryostat set to cut either 30 �m (footpads and spinal cord) or
18-�m-thick (DRG) sections.

Immunostaining experiments were performed as follows. Following
brief postfix in 4% paraformaldehyde in PBS and a couple washes in TBS,
sections were blocked using a 1% BSA (Sigma-Aldrich) and 0.2% Difco
milk (BD Biosciences) solution dissolved in TBS with 0.1% Triton X-100.
Subsequently, sections were incubated overnight at 4°C in the following
primary antibodies diluted in Tyramide Signal Amplification (TSA)
blocking reagent (PerkinElmer): rabbit anti-Ret (1:50, IBL), rabbit anti-
TrkA (1:300, Millipore), goat anti-rat calcitonin gene-related peptide
(CGRP, 1:400, Serotec AbD), mouse anti-NF200 (1:200, Sigma), rabbit
anti-�III-tubulin (1:1000, Covance), and mouse anti-�III-tubulin (1:
1000, Millipore). IB4 � labeling was performed overnight at 4°C using an
Alexa-conjugated IB4 (1:200, Invitrogen) diluted in TSA blocking re-
agent (PerkinElmer). The following day, a few washes in TBS with 0.1%
Triton X-100 were performed before incubation with fluorescent-
conjugated secondary antibodies (Invitrogen) diluted in TSA blocking
reagent (PerkinElmer). The following fluorescent-conjugated secondary
antibodies were used from Invitrogen: donkey anti-rabbit 555 (1:200),
donkey anti-goat 488 (1:200 or 1:350), donkey anti-mouse 555 (1:200),
and donkey anti-rabbit 488 (1:200).

TMP histochemistry. Following several washes in Tris-maleate buffer,
spinal cord sections were incubated at 37°C in Tris-maleate buffer con-
taining 0.25% thioamine phosphate (TMP; Sigma-Aldrich) and 0.08%
lead nitrate (Sigma-Aldrich) for 30 min. Following another round of
washes, the reaction was developed briefly in an aqueous solution of 1%
sodium sulfide (Sigma-Aldrich). The reaction was quenched in Tris-
maleate buffer. Then, the slides were dehydrated and coverslipped.

Microscopy. Images were taken using either a Nikon 80i upright epi-
fluorescence microscope with a CoolSnap ES camera or an inverted Leica
DMI400 CSQ Confocal Microscope equipped with a spectral detector for
imaging at 488 and 543 nm. Images were then processed in National
Institutes of Health ImageJ, version 1.48 or Adobe Photoshop software
using only global adjustments to brightness and contrast.

Stereological counts. Stereological counts were done as previously de-
scribed (Golden et al., 2010). To determine intraepidermal nerve fiber
density (IENFD) for total (�III tubulin �) and peptidergic (CGRP �)
fibers, five randomly selected areas of thick, glaborous skin (�120 �m
apart) were assessed for fibers coursing through a measured length of the
dermal– epidermal border. To determine the total numbers of �III-
tubulin �, Ret �, TrkA �, CGRP �, and NF200 � neurons, 18 �m sections
were collected from L3-L5. Positively immunostained profiles were
counted in every fourth section of one DRG (L3, L4, or L5), and final
counts were obtained by multiplying counts by 4. To determine percent-
ages of DRG neuron subpopulations, three randomly selected sections
(�70 �m apart) per DRG were counted for the number of labeled neu-
rons as a percentage of the total (�III tubulin �) neurons. Neuron sizes
were determined manually using MetaMorph software. Spinal cord im-
munohistochemistry experiments were assessed qualitatively by blinded
experimenters.

Statistical analyses. All data were analyzed using Microsoft Excel (Mi-
crosoft) and GraphPad Prism (GraphPad Software). Data are expressed

as mean � SEM. The text and figure legends indicate the statistical test
that was used for each dataset. The text also indicates the group size and
degrees of freedom for each experiment. The following tests were used to
analyze data under various circumstances (outlined in parentheses): un-
paired t test (two groups), one-way repeated-measures (RM) ANOVA
(�2 groups), two-way RM ANOVA (time course with 2 or more groups)
or Kologorov–Smirnov test (comparing two distributions to each other).
The criterion for significance was set at p � 0.05 a priori.

Results
DRG-specific conditional deletion of ERK2
Despite the known importance of ERK1/2 signaling in peripheral
sensitization (Ji et al., 1999; Dai et al., 2002; Obata et al., 2003;
Karim et al., 2006), our previous report demonstrated that ERK1
is dispensable for behavioral hypersensitivity following inflam-
mation or peripheral nerve injury (Alter et al., 2010). To test the
hypothesis that ERK2 plays a predominant role in peripheral
sensitization, we conditionally deleted ERK2 from primary sen-

Figure 1. Conditional deletion of ERK2 is DRG specific. A, Schematic illustrates two con-
structs inserted in the mouse genome: a BAC-transgene with Cre-recombinase driven by a
Nav1.8 promotor and the endogenous ERK2 allele with loxP sites (illustrated by triangles) in-
serted flanking exon 2. In ERK2 f/f; SNS-Cre (called NsERK2 KO) expressing both constructs,
Nav1.8 promotor-driven Cre expression led to excision of exon 2 at loxP site to create a null allele
in Nav1.8 � sensory neurons. B, Western blot and quantification of isolated DRG lysates dem-
onstrate ERK1 and ERK2 expression in NsERK2 KO (CKO) and ERK2 f/f (flox) control mice with
anti-ERK1/2 and anti-�III tubulin as a loading control. C, Western blots and quantifications
were performed to assess ERK1 and ERK2 expression in SC, Cx, CB, or Hippo using an anti-actin as
a loading control. For quantification of ERK bands in B and C, integrated intensities of each
isoform were divided by integrated intensity of total �III tubulin (B) or actin (C) expression and
then normalized to ERK2 f/f controls (flox) (n 	 7/genotype). ***p � 0.001.
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sory neurons using Nav1.8 promoter-driven Cre-recombinase
expression from a BAC transgene (Fig. 1A) (Agarwal et al., 2004;
Samuels et al., 2008). Cre expression was driven primarily in
small, unmyelinated, nociceptive sensory neurons but was also in
approximately one-third of large, myelinated, A� sensory neu-
rons (Agarwal et al., 2004; Shields et al., 2012). Compared with

control littermates lacking the Cre transgene (ERK2 f/f), there was
a decrease in ERK2 expression in the DRG of NsERK2 KO mice
(Fig. 1B; unpaired t test, ***p � 0.0001). As expected, NsERK2
KO DRG retained some ERK2 likely due to its expression in
Nav1.8-negative sensory neurons and non-neuronal cells. Impor-
tantly, ERK1 expression in DRG was unaltered by deletion of

Figure 2. Conditional deletion of ERK2 impairs cold sensation without affecting heat or mechanical thresholds. A, D, NsERK2 KO (A; n 	7 or 8/group) and ERK1 KO (D; n 	5 or 6/group) mice were
assessed for thermotaxis behavior during a 2 h trial on temperature gradient ranging from 49°C to 13°C. Anymaze software (Stoelting) was used to measure time that the mouse’s center of mass
spent in each zone during the entire test (mean � SEM). ***p � 0.001. B, E, Using the extended cold plantar assay, paw withdrawal latency (seconds) to a cold stimulus in NsERK2 KO (B; n 	
8/group) and ERK1 KO (E; n 	 9/group) mice was measured and compared with control littermates on glass held at room temperature (22°C) or cooled to either 17°C or 12°C. *p � 0.05. C, NsERK2
KO (n 	 14) and ERK2 f/f (n 	 14) control littermates were assessed for paw withdrawal latency (seconds) to a radiant heat source using the Hargreaves test. F, NsERK2 KO (n 	 9) and ERK2 f/f (n 	
9) control littermates were assessed for paw withdrawal thresholds (in grams) using calibrated von Frey filaments. Data for paw withdrawal latencies and thresholds are expressed as mean � SEM.
G, Open field locomotor behavior was assessed over 1 h in NsERK2 KO (n 	 7) and ERK2 f/f (n 	 7) control littermates. Data are binned into 5 min intervals and expressed as mean � SEM. H, Time
to fall off of an accelerating Rotarod was measured in both NsERK2 KO (n 	 7) and ERK2 f/f (n 	 7) control littermates. Data are graphed for each of the five trials and expressed as mean � SEM.
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ERK2 (Fig. 1B; unpaired t test, p 	 0.6644). Additionally,
NsERK2 KO mice did not exhibit any changes in ERK1 or ERK2
expression in spinal cord (SC), cerebellum (CB), cortex (Cx), and
hippocampus (Hippo) compared with control littermates (Fig.
1C; unpaired t tests, for ERK1: p 	 0.9153 for SC, p 	 0.7644 for
CB, p 	 0.6534 for Cx, p 	 0.5949 for Hippo; and for ERK2: p 	
0.9113 for SC, p 	 0.4681 for CB, p 	 0.6281 for Cx, p 	 0.9815
for Hippo). ERK2 expression was not altered in control litter-
mates (ERK2 f/f) compared with wild-type mice (data not

shown). Overall, these data are consistent with a selective loss of
ERK2 in Nav1.8� sensory neurons.

Conditional deletion of ERK2 impairs cold sensation without
affecting heat or mechanical thresholds
Although pharmacological inhibition of ERK1/2 signaling does
not alter sensory function in naive mice (Dai et al., 2002; Obata et
al., 2003), we tested whether conditional deletion of ERK2 altered
sensation using naive NsERK2 KO mice. To assess thermal detec-

Figure 3. Sensory neuron ERK2 plays a complex role in formalin- and CFA-induced hypersensitivity. A, Following intraplantar injection of 10 �l of 5% formalin, time spent in
spontaneous behavior (e.g., licking, lifting, or flicking the injured paw) was assessed for ERK2 f/f (n 	 5) and NsERK2 KO (n 	 8) littermates and plotted in 5 min bins for 1 h. B, Time spent
in spontaneous behavior following 5% formalin intraplantar injection was parsed into first (0 –10 min) and second (10 – 60 min) phase of spontaneous behavior. *p � 0.05. **p � 0.01.
C, Paw withdrawal thresholds (in grams) in ERK2 f/f (n 	 8) and NsERK2 KO (n 	 9) mice were measured at baseline and after intraplantar injection of 10 �l of 1 mg/ml CFA. *p � 0.05.
**p � 0.01. D, Paw withdrawal latency to a radiant heat source was measured in ERK2 f/f (n 	 9) and NsERK2 KO (n 	 10) mice and expressed as a percentage of baseline for 2 d following
intraplantar injection of 10 �l CFA. E, F, CFA-induced paw edema was assessed by measuring paw thickness (in millimeters) in NsERK2 KO (E) and ERK1 KO mice (F ) compared with
littermate controls (n 	 4 – 6) both at baseline and after CFA.
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tion ability, we monitored thermotaxis behavior on a tempera-
ture gradient ranging from 49°C to 13°C (Golden et al., 2010).
NsERK2 KO mice demonstrated a moderate, but significant, shift
in their thermotaxis behavior toward cooler temperatures com-
pared with control littermates (Fig. 2A; two-way RM ANOVA

with a Bonferroni post test: significant interaction between zone
and genotype, F 	 4.42, degrees of freedom numerator (dfn) 	
19, degrees of freedom denominator (dfd) 	 260, ***p �
0.0001). Importantly, NsERK2 KO mice exhibited no differences
in open field exploratory behavior (Fig. 2G; two-way RM-

Figure 4. ERK1 and sensory neuron ERK2 differentially modulate NGF-induced heat, but not mechanical, hypersensitivity. A, Paw withdrawal threshold (in grams) was measured at
baseline and after an intraplantar injection of 0.2 �g/10 �l NGF using calibrated filaments in ERK2 f/f (n 	 13), NsERK2 KO (n 	 12), ERK1 WT (n 	 13), and ERK1 KO (n 	 13) mice. Data
are expressed as a paw withdrawal threshold in grams. B, Paw withdrawal threshold data were averaged from the first 3 h following intraplantar injection of 0.2 �g/10 �l NGF for each
ERK knock-out and their control littermate (n 	 12 or 13/group). Data are expressed as a percentage of baseline � SEM. C, Following intraplantar injection of 0.2 �g/10 �l NGF, paw
withdrawal latency to a radiant heat source was assessed in ERK2 f/f (n 	 9), NsERK2 KO (n 	 11), ERK1 WT (n 	 12), and ERK1 KO (n 	 12) mice. Each time point was divided by the
baseline withdrawal latency to express data as a percentage of the baseline latency. *p � 0.05. D, Percentage of baseline data was averaged from the first 3 h following intraplantar
injection of 0.2 �g/10 �l NGF for each ERK knock-out and their control littermate (n 	 9 –12/group). **p � 0.05. Data are expressed as a mean � SEM. E, Paw withdrawal latency to
radiant heat source was measured in ERK2 f/f (n 	 8) and NsERK2 KO (n 	 10) and expressed as a percentage of baseline averaging data from 1 to 3 h following intraplantar injection of
10 �l of 5% formalin. F, G, Mustard oil-induced heat hypersensitivity in NsERK2 KO (F; n 	 4 or 5/group) and ERK1 KO (G; n 	 5/group) mice was measured and expressed as a percentage
of baseline averaging data from 1 to 3 h after 10 �l of 0.75% mustard oil. Data are mean � SEM.
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ANOVA: F 	 0.65, dfn 	 1, dfd 	 12, p 	
0.4366 for genotype), suggesting that the
change in thermotaxis behavior is not due
to decreased overall activity. The shift in
temperature preference could result from
either increased sensitivity to heat or de-
creased sensitivity to cold. To test these
possibilities, we measured responses to
cold and heat stimuli in naive mice.
NsERK2 KO mice exhibited increased
withdrawal thresholds to cold stimuli
compared with control littermates using
the extended cold plantar assay (Brenner
et al., 2012, 2014b) (Fig. 2B; two-way RM
ANOVA with a Bonferroni post test: F 	
7.55, dfn 	 1, dfd 	 14, *p 	 0.0157 for
genotype). However, NsERK2 KO mice
showed no change in their withdrawal la-
tency to radiant heat compared with con-
trol littermates (Fig. 2C; unpaired t test,
p 	 0.6796). In contrast, ERK1 KO mice
did not exhibit a change in thermotaxis
behavior (Fig. 2D; two-way RM ANOVA:
no interaction between zone and geno-
type, F 	 0.22, dfn 	 19, dfd 	 152, p 	
0.9998), sensitivity to cold in the extended
cold plantar assay (Fig. 2E; two-way RM
ANOVA: F 	 0.48, dfn 	 1, dfd 	 32, p 	
0.5003 for genotype), or sensitivity to ra-
diant heat (Alter et al., 2010). To deter-
mine whether mechanical sensation is
altered by loss of either ERK1 or ERK2, we used calibrated von
Frey filaments. Neither ERK1 KO (Alter et al., 2010) nor NsERK2
KO mice (Fig. 2F; unpaired t test, p 	 0.2950) exhibited any
changes in their withdrawal threshold compared with control
littermates. Neither ERK isoform knock-out mouse exhibited a
deficit in the accelerating rotarod test (Fig. 2H; two-way RM
ANOVA: F 	 0.03, dfn 	 1, dfd 	 48, p 	 0.8739 for genotype)
(Alter et al., 2010), indicating that gross motor function was in-
tact. Overall, these data suggest that sensory neuron ERK2 regu-
lates cold sensation.

Sensory neuron ERK2 plays a complex role in formalin-
induced spontaneous pain behavior
ERK1/2 signaling is known to play a role in peripheral sensitiza-
tion induced by chemical or inflammatory stimuli; however,
ERK1 is dispensable for this sensitization (Obata et al., 2003;
Alter et al., 2010). To test whether sensory neuron ERK2 drives
chemical-induced peripheral sensitization, we injected formalin
into the paw, which elicits a behavioral response known to rely, in
part, on peripheral sensitization (Tjølsen et al., 1992; Puig and
Sorkin, 1996). Control littermates exhibited the stereotypical bi-
phasic response to 5% formalin intraplantar injection (Fig. 3A)
characterized by an immediate behavioral response (Phase 1,
0 –10 min) that is followed by a longer lasting delayed phase
(Phase 2, 10 – 60 min). Unexpectedly, NsERK2 KO mice exhibited
an increase in formalin-induced first phase spontaneous behav-
ior compared with control littermates (Fig. 3B; unpaired t test,
*p 	 0.0280). Despite this increased first phase, the NsERK2 KO
mice displayed decreased spontaneous behavior overall (0 – 60
min combined) (Fig. 3A; two-way RM ANOVA with a Bonfer-
roni post test: significant interaction between time and genotype
F 	 2.80, dfn 	 11, dfd 	 121, **p 	 0.0028) and in the second

phase (Fig. 3B; unpaired t test, *p 	 0.0119), suggesting that
sensory neuron ERK2 plays a complex role in formalin-induced
peripheral sensitization. Therefore, a more detailed behavioral
study was required to understand the role of ERK2 in peripheral
sensitization.

Sensory neuron ERK2 is necessary for CFA-induced
mechanical, but not heat, hypersensitivity
To better understand the role of sensory neuron ERK2 in periph-
eral sensitization, we assessed the development and maintenance
of CFA-induced hypersensitivity in NsERK2 KO mice. CFA-
induced heat and mechanical hypersensitivity are both attenu-
ated by pharmacological blockade of ERK1/2 signaling (Obata et
al., 2003). Additionally, CFA-induced heat and mechanical hy-
persensitivity are unaffected by global deletion of ERK1 (Alter et
al., 2010). Therefore, we hypothesized that sensory neuron ERK2
is necessary for CFA-induced hypersensitivity. Following intra-
plantar injection of CFA, NsERK2 KO mice exhibited attenuated
mechanical hypersensitivity compared with control littermates
(Fig. 3C; two-way RM ANOVA with a Bonferroni post test: F 	
9.43, dfn 	 1, dfd 	 105, **p 	 0.0078 for genotype). In contrast,
NsERK2 KO mice displayed a similar magnitude of CFA-induced
heat hypersensitivity compared with control littermates (Fig. 3D;
two-way RM ANOVA: F 	 0.12, dfn 	 1, dfd 	 119, p 	 0.7380
for genotype). Importantly, NsERK2 KO and ERK1 KO mice ex-
hibited CFA-induced paw edema comparable with that of litter-
mate controls, suggesting that loss of either ERK isoform does not
affect the magnitude of CFA-induced inflammation (Fig. 3E,F;
two-way RM ANOVA for NsERK2 KO in 3E: F 	 0.04, dfn 	 1,
dfd 	 9, p 	 0.8461 for genotype; two-way RM ANOVA for ERK1
KO in 3F: F 	 0.26, dfn 	 1, dfd 	 8, p 	 0.6209 for genotype).
Overall, these results indicate that sensory neuron ERK2 plays an

Figure 5. Sensory neuron ERK2 deletion leads to basal hyperphosphorylation of ERK1. Representative Western blots of total
DRG (A) and SC (B) lysates were probed with a pERK1/2 antibody and an ERK1/2 antibody in ERK2 f/f (n 	 7) and NsERK2 KO (n 	
7). Integrated intensities of phosphorylated (activated) pERK1 and pERK2 were divided by integrated intensities of total ERK1 and
ERK2, respectively, to determine the ratio of activated to total protein (pERK1/ERK1 and pERK2/ERK2). *p�0.05 (unpaired t tests).
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isoform-specific role in CFA-induced mechanical, but not heat,
hypersensitivity.

Neither ERK1 nor sensory neuron ERK2 is necessary for
NGF-induced mechanical hypersensitivity
To extend our understanding of the role of ERK isoforms in
inflammation-induced pain, we assessed whether either ERK1 or
ERK2 were necessary for NGF-induced hypersensitivity. Previ-
ously, a pharmacological study demonstrated a role for ERK1/2
in development of NGF-induced mechanical hypersensitivity
(Malik-Hall et al., 2005). To determine whether isoform-specific
functions exist for NGF-induced mechanical hypersensitivity, we
assessed the development and maintenance of mechanical hyper-
sensitivity after NGF in both ERK1 KO and NsERK2 KO mice
compared with littermate controls. NsERK2 KO mice displayed
similar NGF-induced mechanical hypersensitivity compared
with their control littermates over the entire test (Fig. 4A; two-
way RM ANOVA with a Bonferroni post test: for genotype, F 	
0.25, dfn 	 1, dfd 	 23, p 	 0.6208) and at 1–3 h following NGF
injection (Fig. 4B; t test, p 	 0.8007). Likewise, ERK1 KO mice
exhibited comparable NGF-induced mechanical hypersensitivity
to their control littermates over the entire test (Fig. 4A; two-way
RM ANOVA with a Bonferroni post test: for genotype F 	 0.50,
dfn 	 1, dfd 	 24, p 	 0.4877) and at 1–3 h following NGF
injection (Fig. 4B; t test, p 	 0.1789). Together, these data

suggest that neither ERK1 nor ERK2
alone is necessary for the development
and maintenance of NGF-induced me-
chanical hypersensitivity.

ERK1 deletion and sensory neuron
ERK2 deletion differentially modulate
NGF-induced heat hypersensitivity
A previous pharmacological study impli-
cated ERK1/2 activity in the induction of
heat hypersensitivity by NGF (Zhuang et
al., 2004). Following intraplantar injec-
tion of NGF, control littermates devel-
oped heat hypersensitivity that persisted
for 24 h. NsERK2 KO mice displayed
blunted NGF-induced heat hypersensitivity
compared with their control littermates
over the entire test (Fig. 4C; two-way RM
ANOVA with a Bonferroni post test: for
genotype, F 	 5.81, dfn 	 1, dfd 	 18,
*p 	 0.0268) and at 1–3 h following NGF
injection (Fig. 4D; unpaired t test, **p 	
0.0015). Unexpectedly, ERK1 KO mice
developed increased heat hypersensitiv-
ity relative to their wild-type littermates
during the entire test (Fig. 4C; two-way
RM-ANOVA with a Bonferroni post test:
for genotype, F 	 4.51, dfn 	 1, dfd 	 22,
*p 	 0.0452) and at 1–3 h following NGF
injection (Fig. 4D; unpaired t test, **p 	
0.0098). Based on these findings, ERK1
and ERK2 play functionally distinct and
opposing roles in the development of
NGF-induced heat hypersensitivity.

Although ERK1 KO and NsERK2 KO
mice had significantly altered NGF-
induced heat hypersensitivity, both lines
had normal CFA-induced heat hypersen-

sitivity (Fig. 3D) (Alter et al., 2010). To further evaluate these
findings, we tested heat hypersensitivity following other algo-
gens. NsERK2 KO mice developed formalin- and mustard oil-
induced heat hypersensitivity comparable with control
littermates (Fig. 4E,F; unpaired t tests, p 	 0.4871 and p 	
0.7417, respectively). ERK1 KO mice exhibited attenuated
formalin-induced heat hypersensitivity (Alter et al., 2010) but
displayed similar mustard oil-induced heat hypersensitivity com-
pared with control littermates (Fig. 4G; unpaired t test, p 	
0.1379). Taken as a whole, these data suggest that ERK1 and
ERK2 differentially contribute to heat hypersensitivity generated
by different algogens.

Sensory neuron-specific ERK2 deletion causes basal
hyperphosphorylation of ERK1
Because pharmacological studies support a role for ERK1/2 ac-
tivity in both NGF-induced mechanical hypersensitivity and
CFA-induced heat hypersensitivity (Obata et al., 2003; Malik-
Hall et al., 2005), the absence of a phenotype in either ERK1 KO
or NsERK2 KO mice may suggest functional redundancy (Figs.
3D and 4A) (Alter et al., 2010). Hyperphosphorylation of one
ERK isoform has been observed in the absence of the other in
various systems (Mazzucchelli et al., 2002; Lefloch et al., 2008; Xu
et al., 2008; Alter et al., 2010; Otsubo et al., 2012) and may reflect
a mechanism for functional compensation. Naive NsERK2 KO

Figure 6. Sensory neuron-specific ERK1/2 double knock-out mice exhibit altered baseline sensitivity to noxious stimuli. A, B,
Paw withdrawal latency (in seconds) to a radiant heat source directed at either the hindpaw (A) or tail (B) was measured in female
ERK dKO mice compared with control and single knock-out littermates (n 	 5– 8/genotype; one-way ANOVAs). **p � 0.01. C,
Paw withdrawal threshold to an innocuous, calibrated von Frey mechanical stimulus was measured in female ERK dKO mice and
compared with control and single knock-out littermates (n 	 5– 8/genotype, one-way ANOVA). D, Randall-Selitto tail pinch assay
was used to measure tail withdrawal thresholds in female ERK dKO mice compared with control and single knock-out littermates
(n 	 5– 8/genotype). ***p � 0.001 (one-way ANOVA). E, Data from Randall-Selitto assay in D were separated into distal (1 mm
from tail end), medial (2 mm from tail end), and proximal (3 mm from tail end) bins (n	5– 8/genotype). ***p�0.001 (two-way
RM ANOVA with Bonferroni post test).
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mice demonstrated increased levels of pERK1, but not pERK2, in
DRG compared with control littermates (Fig. 5A; unpaired t tests,
*p 	 0.0232 for pERK1 and p 	 0.7782 for pERK2). This change
in pERK levels was not observed in SC (Fig. 5B; unpaired t tests,
p 	 0.8738 for pERK1 and p 	 0.6854 for pERK2). Despite this
compensatory hyperphosphorylation of ERK1 in DRG, NsERK2
KO mice fail to develop some inflammatory pain phenotypes,
suggesting that sensory neuron ERK1 cannot completely com-
pensate for loss of ERK2. However, in other inflammatory pain
models, NsERK2 KO mice develop hypersensitivity normally,

possibly due to compensation via hyperactivation of ERK1 in
DRGs.

Sensory neuron-specific ERK1/2 double knock-out mice
exhibit deficits in sensation and inflammatory pain
To assess functionally redundant roles of ERK1 and ERK2 in
sensory neurons, we generated mice with global deletion of ERK1
and Nav1.8� sensory neuron-specific deletion of ERK2 by cross-
ing the NsERK2 KO and ERK1 KO mice. These mice are sensory
neuron-specific ERK1/2 double knock-out mice in the context of
ERK1 global deletion and, for simplicity of nomenclature, will be
referred to as ERK dKO mice throughout the remainder of the
paper. Naive ERK dKO mice did not exhibit any gross motor
deficits (data not shown). Naive ERK dKO mice did exhibit de-
creased sensitivity to radiant heat on their hindpaw, but not their
tails (Fig. 6A,C; one-way ANOVA, **p 	 0.0025 and p 	 0.6752,
respectively). Naive ERK dKO mice also exhibited decreased
sensitivity to mechanical stimuli applied to the tail, but not the
hindpaw (Fig. 6D,B; one-way ANOVA, ***p � 0.0001 and p 	
0.5025, respectively). Loss of mechanical sensitivity was only ev-
ident at the distal end of the tail, suggesting a length-dependent
loss of sensation (Fig. 6E; two-way RM ANOVA with a Bonfer-
roni post test: significant effect of genotype F 	 20.00, dfn 	 3,
dfd 	 44, ***p � 0.0001 compared with ERK2 f/f). ERK dKO mice
also displayed attenuated NGF-induced heat hypersensitivity
compared with control littermates over the entire test (Fig. 7A;
two-way RM ANOVA, F 	 7.95, dfn 	 1, dfd 	 13, *p 	 0.0145
for genotype) and at 1–3 h following NGF injection (Fig. 7B;
unpaired t test, **p 	 0.0093). Interestingly, all adult ERK dKO
mice presented with diffuse injuries on their distal extremities,
specifically on their tails and ears, first seen at �5 weeks of age

Figure 7. Sensory neuron-specific ERK1/2 double knock-out mice do not develop NGF-
induced heat hypersensitivity. A, Following intraplantar injection of 0.2 �g/10 �l NGF, paw
withdrawal latency to a radiant heat source was assessed in ERK dKO (n 	 8) and ERK2 f/f (n 	
7) control littermates, and each time point was divided by the baseline paw withdrawal latency
to express data as a percentage of the baseline latency. *p � 0.05 (two-way RM ANOVA with
Bonferroni post test). B, Percentage of baseline data was averaged from the first 3 h following
intraplantar injection of 0.2 �g/10 �l NGF for ERK dKO (n 	 8) and their ERK2 f/f control
littermates (n 	 7; unpaired t test). **p � 0.01. A, B, Data are expressed as a mean of the
percentage baseline � SEM.

Figure 8. Sensory neuron-specific double knock-out mice exhibit injuries on their distal
extremities. Representative images of adult male (A) and female (B) ERK dKO mice demonstrate
injuries on distal extremities (e.g., tail and ear) highlighted in red.
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(Fig. 8A,B). While these injuries could be due to either self-
mutilation or fighting with littermates, the sites of injury were
more consistent with self-mutilation behavior (autotomy). Such
autotomy behavior may result from either dysesthesia or lack of
sensation (Ossipov and Porreca, 2013). ERK dKO mice did not
exhibit any overt signs of spontaneous scratching behavior, sug-
gesting that the diffuse injuries were not the result of increased
itch. Regardless of its cause, this self-injury phenotype confounds
the interpretation of behavioral data in pain models; and, as such,

no further behavioral testing was performed on ERK dKO mice.
Importantly, neither ERK1 KO nor NsERK2 KO mice exhibited
these injuries.

Expression of at least one ERK isoform is necessary for
target innervation
Because of the self-injury phenotype and baseline sensory defi-
cits, we hypothesized that the anatomy of the peripheral nervous
system was altered in ERK dKO mice. During embryogenesis,

Figure 9. Expression of at least one ERK isoform is necessary for target innervation of epidermis and SCDH. A–D, Representative confocal images of total IENFD demonstrate �III-tubulin � fibers
coursing through dermal– epidermal border in WT (A), ERK1 KO (B), NsERK2 KO (C), and ERK dKO (D) mice. E–H, Representative confocal images of peptidergic IENFD demonstrate CGRP � fibers
coursing through dermal– epidermal border in WT (E), ERK1 KO (F ), NsERK2 KO (G), and ERK dKO (H ) mice. Scale bar, 50 �m. I, J, In independent studies, average total (I ) and peptidergic (J ) IENFD
(fibers/100 �m) were determined for NsERK2 KO (n 	 9), ERK1 KO (n 	 10), and ERK dKO (n 	 6) mice, and then data were divided by the control (n 	 6 –10) littermates’ IENFD for graphical
illustration (mean � SEM). K–N, Representative images of nociceptive central termination in the SCDH demonstrated CGRP � (green) and IB4 � (red) nociceptive terminals in laminas I and II,
respectively, for WT (K ), ERK1 KO (L), NsERK2 KO (M ), and ERK dKO (N ) mice. Scale bar, 100 �m. TMPase assay assessed PAP activity present in nonpeptidergic fibers terminating in lamina II of SCDH
in WT (O; n 	 4). P, ERK dKO (n 	 4) did not exhibit any TMPase activity indicative of nonpeptidergic terminals. Scale bar, 100 �m. *p � 0.05 and ***p � 0.001.
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ERK1/2 signaling is known to play a predominant role in the
development of the peripheral nervous system, particularly for
DRG neuron target innervation and survival (Newbern et al.,
2011). However, it is not known whether ERK1/2 signaling is
necessary after birth for maintaining target innervation or for
survival of sensory neurons. Because the Nav1.8-driven BAC
transgenic Cre has been demonstrated to express Cre-recom-
binase starting at P0 (Agarwal et al., 2004), we can directly test
whether sensory neuron ERK1/2 signaling is necessary for post-
natal sensory neuron maintenance.

To assess target innervation in ERK dKO mice, we counted
nociceptive free nerve endings in the epidermis. In the thick,
glabrous skin of the hindpaw, both ERK1 KO and NsERK2 KO
mice demonstrated that normal total IENFD was assessed by the
pan-neuronal marker, �III tubulin (Fig. 9A–C,I; unpaired t tests,
p 	 0.2970 for ERK1 KO and p 	 0.7435 for NsERK2 KO). How-
ever, ERK dKO mice exhibited a decrease (�40%) in total IENFD
compared with control littermates, suggesting that expression of
at least one ERK isoform is required for maintaining total IENFD
(Fig. 9D, I; unpaired t test, ***p 	 0.0009). To further investigate
the molecular identity of the remaining fibers in ERK dKO mice,
we assessed peptidergic IENFD that normally accounts for �40%
of epidermal innervation by labeling fibers for CGRP (Zylka et al.,
2005). Whereas ERK1 KO mice exhibited comparable CGRP�

IENFD to control littermates (Fig. 9F, J; unpaired t test, p 	
0.5741), NsERK2 KO mice exhibited a small, but significant
(�25%), decrease (Fig. 9G,J; unpaired t test, *p � 0.05). Strik-
ingly, ERK dKO mice exhibited almost total loss (�85% de-
crease) of CGRP� IENFD (Fig. 9H, J; unpaired t test, ***p �
0.001). Because peptidergic and nonpeptidergic fibers account
for nearly all epidermal innervation (Zylka et al., 2005), the 40%
decrease in total IENFD in ERK dKO mice is likely accounted for
solely by the near-complete loss of peptidergic IENFD. In
NsERK2 KO mice, the decrease in peptidergic IENFD is likely too
small to be seen in total IENFD. Therefore, in both lines, nonpep-
tidergic IENFD likely remains normal.

To determine whether central terminals of DRG neurons were
affected, we assessed their termination in the spinal cord dorsal
horn (SCDH) from ERK mutants. Distinct patterns of nocicep-
tive fiber inputs occur in the SCDH such that peptidergic
(CGRP�) fibers project to laminas I, IIi, and deeper lamina, and
nonpeptidergic (isolectin B4 binding, IB4�) fibers project to
lamina IIo as seen in control littermates (Fig. 9K). In both ERK1
KO and NsERK2 KO mice, this pattern remained intact (Fig.
9L,M). However, ERK dKO mice displayed decreased CGRP�

terminals and loss of IB4� binding, suggesting that there was a
loss of peptidergic and nonpetidergic terminals (Fig. 9N). To
assess another marker of nonpetidergic terminals, we examined
whether the SCDH of ERK dKO mice exhibited TMPase activity
seen specifically in nonpeptidergic fibers (Zylka et al., 2008). No
TMPase activity remained in the ERK dKO SCDH, whereas con-
trol littermates showed TMPase activity in lamina IIo (Fig. 9O,P).
Together, this suggests that expression of at least one ERK iso-
form is required for central termination of nociceptive fibers.

Expression of at least one ERK isoform is necessary for DRG
sensory neuron survival
In prior studies, prenatal loss of ERK1/2 in sensory neurons led to
loss of epidermal innervation and subsequent neuronal cell death
presumably due to a lack of trophic support (Newbern et al.,
2011). Given these observations, we hypothesized that the de-
creased IENFD in ERK dKO mice was associated with DRG neu-
ron loss. To test this hypothesis, L5 DRGs from both single and

double knock-out mice were analyzed for total neuron number
using the pan-neuronal marker, �III tubulin. Consistent with
unchanged IENFD, neither ERK1 KO nor NsERK2 KO mice ex-
hibited changes in total L5 DRG neuron number compared with
control littermates (Tables 1, 2; unpaired t tests). However, ERK
dKO mice showed an �67% decrease in L5 DRG neuron number
(Fig. 10A,B; unpaired t test, ***p 	 0.0004). Notably, ERK dKO
mice exhibited a decrease in neurons of various sizes (Fig. 10C;
two-way RM ANOVA, two-way RM ANOVA with a Bonferroni
post test; interaction between genotype and size, **p 	 0.0011)
but still had a similar cumulative distribution of DRG neuron
sizes compared with control littermates (Fig. 10D; Kologorov–
Smirnov test). These data suggest that expression of at least one
ERK isoform is required for postnatal survival of both small- and
large-diameter sensory neurons. Importantly, loss of �67% of
DRG neurons is consistent with loss of most Nav1.8� sensory
neurons (Shields et al., 2012). Because Nav1.8� sensory neurons
are critical for noxious mechanical and inflammatory pain
(Abrahamsen et al., 2008), our behavioral experiments in the
ERK dKO mice likely demonstrate the necessity of Nav1.8� sen-
sory neurons rather than the role of sensory neuron ERK1/2 sig-
naling in pain.

Expression of at least one ERK isoform is necessary for
survival of various Nav1.8 � neuronal subpopulations
Given the widespread loss of sensory neurons, we further charac-
terized the subpopulations of sensory neurons lost by ERK1/2
deletion. Consistent with central fiber termination, neither ERK1
KO nor NsERK2 KO L4-L5 DRGs displayed changes in the per-
centages of IB4�, CGRP�, or TrkA� neurons compared with
control littermates (Tables 1 and 2; unpaired t tests). Strikingly,
ERK dKO L5 DRGs presented with few, if any, IB4� nonpepti-
dergic neurons (Fig. 11A; unpaired t test, ***p � 0.0001). To
determine whether nonpeptidergic nociceptors remained, we as-
sessed Ret expression in small- and large-diameter neurons that
correspond to nociceptors and low-threshold mechanoreceptors,

Table 1. NsERK2 KO versus ERK2 f/f (control)a

ERK2 f/f NsERK2 KO p

Total neurons 9879 � 724 (4) 9190 � 316 (4) 0.4167
CGRP (%) 33.11 � 4.45% (6) 27.71 � 3.12% (6) 0.3442
TrkA (%) 26.17 � 2.65% (5) 23.90 � 2.71% (6) 0.5680
IB4 � (%) 14.89 � 1.76% (4) 14.71 � 1.24% (4) 0.9384
NF200 � (%) 31.36 � 5.58%b(3) 31.97 � 3.78% (4) 0.8131
aNeither ERK2 nor ERK1 alone is necessary for survival and normal distribution of DRG neuron subpopulations. Data
are DRG neuron distributions in NsERK2 KO compared with the distributions in control littermates. Total neuron data
represent total neuron counts in L5 DRGs. For specific markers, the percentage of marker-specific positive neurons is
reported as measured in one ganglion from L3-L5 DRGs. Data represent mean � SEM; values in parentheses are the
number of animals for each experiment.
bThe same control (ERK2 f/f) used for NsERK2 KO and ERK1 KO littermates from ERK dKO colony.

Table 2. ERK1 KO versus WTa

WT ERK1 KO p

Total neurons 7789 � 979 (6) 5641 � 340 (6) 0.0650
CGRP (%) 17.08 � 4.32% (3) 19.29 � 3.38% (3) 0.5130
TrkA (%) 12.00 � 1.28% (4) 14.73 � 1.30% (4) 0.1867
IB4 � (%) 20.73 � 2.28% (6) 24.73 � 2.75% (6) 0.2884
NF200 � (%) 31.36 � 5.58%b(3) 25.06 � 2.44% (4) 0.3034
aNeither ERK2 nor ERK1 alone is necessary for survival and normal distribution of DRG neuron subpopulations. Data
are DRG neuron distributions in ERK1 KO compared with the distributions in control littermates. Total neuron data
represent total neuron counts in L5 DRGs. For specific markers, the percentage of marker-specific positive neurons is
reported as measured in one ganglion from L3-L5 DRGs. Data represent mean � SEM; values in parentheses are the
number of animals for each experiment.
bThe same control (ERK2 f/f) used for NsERK2 KO and ERK1 KO littermates from ERK dKO colony.
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respectively. ERK dKO L5 DRGs exhibited a profound decrease in
Ret� neurons compared with control littermates (Fig. 11B; un-
paired t test, ***p 	 0.0003) that was limited to the small-
diameter subset (data not shown). Consistent with epidermal
innervation, ERK dKO L4 DRGs also exhibited a decrease in
CGRP� pepidergic neurons compared with control littermates
(Fig. 11C; unpaired t test, *p 	 0.0117). Likewise, ERK dKO L4
DRGs demonstrated a similar reduction in TrkA� peptidergic
neurons compared with control littermates (WT: 675 � 95.43
TrkA� neurons and ERK dKO: 406 � 21.57 TrkA� neurons;
unpaired t test, *p 	 0.0333).

Our neurochemical analysis shows that expression of at least
one ERK isoform is required for maintenance of peptidergic and
nonpeptidergic nociceptors. However, size-distribution analysis
also suggests loss of neurofilament 200� (NF200�), large-
diameter myelinated A�-sensory neurons comprised of low-
threshold mechanoreceptors and proprioceptors (Lawson and
Waddell, 1991). Both ERK1 KO and NsERK2 KO L3 DRG show
normal percentages of NF200� neurons compared with control
littermates (Tables 1 and 2; unpaired t tests). In contrast, ERK
dKO mice exhibited an �77% decrease in NF200� neurons com-
pared with control littermates (Fig. 11D; unpaired t test, **p 	
0.0068). Overall, these data demonstrate a redundant role for
ERK1 and ERK2 in sensory neurons requiring expression of at
least one ERK isoform for the survival of both small- and large-
diameter sensory neurons.

Discussion
This study is the first to identify functional differences between
ERK1 and ERK2 explicitly in sensory neurons. Conditional dele-

tion of ERK2 in sensory neurons attenuated cold sensation and
behavioral sensitization in several inflammatory pain models.
Characterization of ERK dKO mice revealed a role for ERK1/2
signaling in postnatal survival of DRG neurons. Yet, expression
of either isoform alone is sufficient to maintain DRG neuron
survival. Thus, ERK1 and ERK2 exhibit both functionally distinct
and redundant roles in sensory neurons.

ERK2 regulates peptidergic epidermal innervation, cold
adaptation, and inflammatory pain
ERK1/2 signaling plays a critical role in the development of epi-
dermal innervation that begins at �E15 and is completed by birth
(Coggeshall et al., 1994; Jackman and Fitzgerald, 2000; Newbern
et al., 2011). Genetic knock-out studies demonstrated that a con-
served Raf/MEK/ERK signaling cascade downstream of NGF/
TrkA is critical for establishing epidermal target innervation
during embryogenesis (Patel et al., 2000; Zhong et al., 2007; New-
bern et al., 2011). Our NsERK2 KO mice exhibit a small decrease
in epidermal innervation. Because ERK2 deletion in NsERK2 KO
mice is initiated at P0 after innervation is completed (Coggeshall
et al., 1994; Jackman and Fitzgerald, 2000; Agarwal et al., 2004),
our data show that ERK2 is required for maintenance of epider-
mal innervation. Because NGF is required throughout adulthood
for maintaining epidermal innervation (Bennett et al., 1998), we
speculate that ERK2 signals downstream of NGF in a subset of
peptidergic neurons to maintain epidermal target innervation
throughout adulthood.

Our data suggest that ERK2 functions differently in distinct
sensory neuron populations. Peptidergic fibers are required for
formalin, NGF, and CFA-induced heat hypersensitivity (Peter-

Figure 10. Expression of at least one ERK isoform is necessary for DRG neuron survival. A, Representative images of L5 DRG demonstrate total DRG neurons identified using the pan-neuronal
marker, �III tubulin, in WT (A) and ERK dKO (B) mice. Scale bar, 100 �m. B, Total neuron counts for WT (n 	 6) and ERK dKO (n 	 6) mice were performed assessing neuronal number in the L5 DRGs
using the pan-neuronal marker, �III tubulin, to identify neurons. C, D, Size distribution data of �III tubulin � neurons were acquired for WT (n 	 3) and ERK dKO (n 	 3) mice using MetaMorph
software to manually measure cross-sectional area of neurons in 18-�m-thick sections. Data are graphed both as a total number of neurons per bins (C) and cumulative frequency of neuron sizes
(D). Data are mean � SEM. *p � 0.05 and ***p � 0.001.
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son et al., 1997; Chen et al., 2007; McCoy
et al., 2013). Thus, the complicated phe-
notype of NsERK2 KO mice in these three
models may reflect the decreased pepti-
dergic innervation instead of a deficit in
their sensitization. Indeed, ERK2 may be
dispensable for sensitization of peptider-
gic fibers because CFA-induced heat hy-
persensitivity is preserved in NsERK2 KO
mice. However, our data suggest that
ERK2 is required for sensitization in non-
peptidergic neurons. Sensory neuron
ERK2 deletion does not affect nonpepti-
dergic innervation but does decrease
CFA-induced mechanical hypersensitiv-
ity, which has been shown to require non-
peptidergic neurons (Cavanaugh et al.,
2009). Based on our previous study of
cold adaptation, the observed impair-
ment in cold sensation in NsERK2 KO
mice suggests a deficit in TRPM8-
dependent cold adaptation (Brenner et
al., 2014a). Interestingly, an upstream ki-
nase, protein kinase C, is required for cold
adaptation downstream of TRPM8-
dependent Ca 2� influx in vitro (Premku-
mar et al., 2005; Abe et al., 2006). Because
ERK1/2 is activated in TRPM8� sensory
neurons by noxious cold application to
the hindpaw (Mizushima et al., 2006), it is
possible that ERK2 may act downstream
of protein kinase C in an isoform-
specific manner to mediate TRPM8-
dependent cold adaptation in vivo. Thus,
sensory neuron ERK2 may be the pre-
dominant mediator of ERK-dependent
mechanisms of nociception in both non-
peptidergic and cold-sensitive neurons.

A few possibilities could explain why
sensory neuron ERK2 may not drive all
inflammation-induced peripheral sensiti-
zation, although pharmacological inhibi-
tion of ERK1/2 signaling abrogates both
NGF-induced mechanical and CFA-
induced heat hypersensitivity (Obata et
al., 2003; Malik-Hall et al., 2005). Activa-
tion of ERK1/2 signaling in non-neuronal
cells or in the SCDH neurons may be required to drive some types
of inflammatory pain (Obata et al., 2003; Xu et al., 2008). An-
other possibility is that ERK1 hyperphosphorylation in the DRG
compensates for the loss of ERK2. Alternatively, other signaling
cascades, including p38, JNK, or PI3 kinase, which are known to
be involved in inflammation-induced peripheral sensitization,
may compensate for loss of sensory neuron ERK2 (Ji et al., 2002;
Gao and Ji, 2008; Melemedjian et al., 2010). Compensation from
these signaling cascades could underlie the paradoxical observa-
tion of increased spontaneous pain behavior in the first phase of
the formalin test.

ERK1 may play an antinociceptive role in NGF-induced heat
hypersensitivity. ERK1 KO mice exhibited increased NGF-
induced heat hypersensitivity that, unlike NsERK2 KO mice,
could not be explained by a change in epidermal innervation.
Similar gain-of-function effects due to ERK1 deletion have been

observed in vitro (Vantaggiato et al., 2006) and in vivo (Mazzuc-
chelli et al., 2002). In these cases, gain-of-function is associated
with ERK2 hyperphosphorylation, raising the possibility that de-
leting ERK1 may reveal gain-of-function phenotypes via elevated
ERK2 activity. Consistent with this hypothesis, we found that
ERK1 deletion increases ERK2 phosphorylation (Alter et al.,
2010). Alternatively, ERK1 could have antinociceptive effects in
primary afferents, or global deletion of ERK1 could affect either
CNS neurons or non-neuronal cells to enhance NGF-induced
heat hypersensitivity.

Functionally redundant roles for sensory neuron ERK1 and
ERK2 in postnatal DRG sensory neuron survival
Sensory neuron-specific ERK1/2 deletion revealed functionally
redundant roles for ERK1 and ERK2 in postnatal sensory neuron
survival. We hypothesize that neuron loss in ERK dKO mice re-

Figure 11. Expression of at least one ERK isoform is necessary for survival of various Nav1.8 � neuronal subpopulations. A,
Representative confocal images illustrate IB4 � binding in L5 DRG neurons of WT and ERK dKO mice. Percentage of IB4 � neurons
as a function of total �III tubulin � neurons were quantified for WT and ERK dKO littermates. ***p � 0.001. B, Representative
confocal images illustrate Ret � immunostaining in L5 DRG neurons of WT and ERK dKO mice. Total Ret � neurons were quantified
for WT and ERK dKO littermates. ***p � 0.001. C, Representative confocal images illustrate CGRP � immunostaining in L4 DRG
neurons of WT and ERK dKO mice. Total CGRP � neurons were quantified for WT and ERK dKO littermates. *p � 0.05. D, Repre-
sentative confocal images illustrate NF200 � immunostaining in L3 DRG neurons of WT and ERK dKO mice. Total NF200 � neurons
were quantified for WT and ERK dKO littermates. **p � 0.01. Scale bar, 50 �m. Sample size varied from 3 to 6 per group as
indicated on the graphs. Data are mean � SEM.
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sults from decreased epidermal trophic support. This hypothesis
is supported by several observations. ERK1/2 signaling is acti-
vated downstream of TrkA and Ret, the receptors for the
epidermal-derived trophic factors NGF and the GDNF family
ligands, respectively (Airaksinen and Saarma, 2002; Sah et al.,
2003). We have previously shown that deletion of Ret in Nav1.8�

neurons results in an �30% decrease in the number of DRG
neurons by adulthood (Golden et al., 2010). Additionally, target-
derived NGF/TrkA signaling is required for DRG neuron survival
during early postnatal life (Lewin and Mendell, 1994). Prenatal
deletion of ERK1/2 starting at E12.5 results in loss of epidermal
innervation at P3 followed by cell loss at P18 (Newbern et al.,
2011), consistent with the requirement for target-derived trophic
support for sensory neuron survival. Our findings support and
extend these results by demonstrating a requirement for expres-
sion of at least one ERK isoform for neuron survival after the
establishment of epidermal innervation.

Widespread loss of large-diameter, NF200� neurons in ERK
dKO is unexpected because Nav1.8-Cre driven ERK2 deletion
should only occur in approximately one-third of these neurons
(Agarwal et al., 2004; Shields et al., 2012). In neurons expressing
both NF200 and Nav1.8, ERK1 and ERK2 play functionally re-
dundant roles to promote survival; however, the remaining
NF200� neurons may be lost as a result of non– cell-autonomous
effects. BDNF is expressed in small-diameter TrkA� peptidergic
neurons and may promote postnatal survival of both small- and
large-diameter neurons through paracrine signaling, which
would be lost in ERK dKO mice due to loss of peptidergic neurons
(Valdés-Sánchez et al., 2010). Another possibility is that, due to
global loss of ERK1, Nav1.8-driven Cre expression is altered, lead-
ing to changes in its timing and/or its cell type specificity. How-
ever, we do not favor this interpretation because ERK1 has not
been shown to affect Nav1.8 expression.

With widespread neuron loss, it is interesting that some epi-
dermal innervation remains. The decrease in total IENFD in ERK
dKO mice initially appeared to be accounted for solely by loss of
peptidergic IENFD. However, the majority of nonpeptidergic
neurons are lost in ERK dKO mice. Thus, the cellular origin of the
remaining fibers is unclear because nonpeptidergic fibers nor-
mally account for the remaining epidermal innervation (Zylka et
al., 2005). Previous studies suggest that the amount of available
trophic factors in target fields regulates innervation density (Kes-
sler et al., 1983; Zwick et al., 2002; Elitt et al., 2006; Golden et al.,
2010). Therefore, other afferents dependent on GDNF family
ligands or NGF may provide collaterals or de novo innervation to
this hypoinnervated epidermal region in ERK dKO mice.

Functional redundancy model of ERK1 and ERK2
The functional redundancy hypothesis presumes that ERK1 and
ERK2 share roles because of their high sequence homology
(Boulton and Cobb, 1991; Boulton et al., 1991); however, ERK1
and ERK2 have functionally distinct roles in various cell types
(Pagès et al., 1999; Nekrasova et al., 2005; Satoh et al., 2007,
2011a; Newbern et al., 2008; Samuels et al., 2008; Alter et al., 2010;
Fyffe-Maricich et al., 2011; Otsubo et al., 2012). This study is the
first to demonstrate a distinct functional role for ERK2 in sensory
neurons. The molecular basis of this isoform-specific function
remains unclear. ERK isoforms could be differentially expressed
in sensory neuron subtypes; however, loss of Nav1.8� neurons
only in the ERK dKO and not in single isoform KO mice suggests
that both isoforms are expressed in these cells. Alternatively, it is
possible that ERK1 and ERK2 are differentially localized in nerve
terminals such that ERK2 specifically regulates ERK-dependent

changes in membrane excitability (Stamboulian et al., 2010) or
local nascent protein translation (Price and Géranton, 2009; Me-
lemedjian et al., 2010). Faster nuclear shuttling of ERK2 could
also contribute to the predominant role of ERK2 in peripheral
sensitization (Marchi et al., 2008). Last, as previously postulated,
isoform-specific roles for ERK1 and ERK2 may not exist because
total ERK activity may be paramount (Lefloch et al., 2008). How-
ever, loss of both isoforms leads to novel phenotypes in different
systems, including in sensory neurons as we have shown, indicat-
ing that there are both functionally distinct and fully redundant
roles for ERK1 and ERK2 (Newbern et al., 2011; Satoh et al.,
2011b; Yasuda et al., 2011; Ishii et al., 2012, 2013).

References
Abe J, Hosokawa H, Sawada Y, Matsumura K, Kobayashi S (2006) Ca 2�-

dependent PKC activation mediates menthol-induced desensitization of
transient receptor potential M8. Neurosci Lett 397:140 –144. CrossRef
Medline

Abrahamsen B, Zhao J, Asante CO, Cendan CM, Marsh S, Martinez-Barbera
JP, Nassar MA, Dickenson AH, Wood JN (2008) The cell and molecular
basis of mechanical, cold, and inflammatory pain. Science 321:702–705.
CrossRef Medline

Agarwal N, Offermanns S, Kuner R (2004) Conditional gene deletion in
primary nociceptive neurons of trigeminal ganglia and dorsal root gan-
glia. Genesis 38:122–129. CrossRef Medline

Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological
functions and therapeutic value. Nat Rev Neurosci 3:383–394. CrossRef
Medline

Alter BJ, Zhao C, Karim F, Landreth GE, Gereau RW 4th (2010) Genetic
targeting of ERK1 suggests a predominant role for ERK2 in murine pain
models. J Neurosci 30:11537–11547. CrossRef Medline

Bennett DL, Koltzenburg M, Priestley JV, Shelton DL, McMahon SB (1998)
Endogenous nerve growth factor regulates the sensitivity of nociceptors in
the adult rat. Eur J Neurosci 10:1282–1291. CrossRef Medline

Boulton TG, Cobb MH (1991) Identification of multiple extracellular
signal-regulated kinases (ERKs) with antipeptide antibodies. Cell Regul
2:357–371. Medline

Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD,
DePinho RA, Panayotatos N, Cobb MH, Yancopoulos GD (1991) ERKs:
a family of protein-serine/threonine kinases that are activated and ty-
rosine phosphorylated in response to insulin and NGF. Cell 65:663– 675.
CrossRef Medline

Brenner DS, Golden JP, Gereau RW 4th (2012) A novel behavioral assay for
measuring cold sensation in mice. PLoS One 7:e39765. CrossRef Medline

Brenner DS, Golden JP, Vogt SK, Dhaka A, Story GM, Gereau RW IV
(2014a) A dynamic set point for thermal adaptation requires phospho-
lipase C-mediated regulation of TRPM8 in vivo. Pain 155:2124 –2133.
CrossRef Medline

Brenner DS, Vogt SK, Gereau RW (2014b) A technique to measure cold
adaptation in freely behaving mice. J Neurosci Methods 236C:86 –91.
CrossRef Medline

Carrasquillo Y, Gereau RW 4th (2007) Activation of the extracellular signal-
regulated kinase in the amygdala modulates pain oerception. J Neurosci
27:1543–1551. CrossRef Medline

Cavanaugh DJ, Lee H, Lo L, Shields SD, Zylka MJ, Basbaum AI, Anderson DJ
(2009) Distinct subsets of unmyelinated primary sensory fibers mediate
behavioral responses to noxious thermal and mechanical stimuli. Proc
Natl Acad Sci U S A 106:9075–9080. CrossRef Medline

Chen HS, He X, Wang Y, Wen WW, You HJ, Arendt-Nielsen L (2007) Roles
of capsaicin-sensitive primary afferents in differential rat models of in-
flammatory pain: a systematic comparative study in conscious rats. Exp
Neurol 204:244 –251. CrossRef Medline

Coggeshall RE, Pover CM, Fitzgerald M (1994) Dorsal root ganglion cell
death and surviving cell numbers in relation to the development of sen-
sory innervation in the rat hindlimb. Dev Brain Res 82:193–212. CrossRef
Medline

Dai Y, Iwata K, Fukuoka T, Kondo E, Tokunaga A, Yamanaka H, Tachibana
T, Liu Y, Noguchi K (2002) Phosphorylation of extracellular signal-
regulated kinase in primary afferent neurons by noxious stimuli and its
involvement in peripheral sensitization. J Neurosci 22:7737–7745.
Medline

O’Brien, Alter et al. • Distinct and Redundant Roles of DRG ERK Isoforms J. Neurosci., June 24, 2015 • 35(25):9491–9507 • 9505

http://dx.doi.org/10.1016/j.neulet.2005.12.005
http://www.ncbi.nlm.nih.gov/pubmed/16380208
http://dx.doi.org/10.1126/science.1156916
http://www.ncbi.nlm.nih.gov/pubmed/18669863
http://dx.doi.org/10.1002/gene.20010
http://www.ncbi.nlm.nih.gov/pubmed/15048809
http://dx.doi.org/10.1038/nrn812
http://www.ncbi.nlm.nih.gov/pubmed/11988777
http://dx.doi.org/10.1523/JNEUROSCI.6103-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20739576
http://dx.doi.org/10.1046/j.1460-9568.1998.00139.x
http://www.ncbi.nlm.nih.gov/pubmed/9749782
http://www.ncbi.nlm.nih.gov/pubmed/1654126
http://dx.doi.org/10.1016/0092-8674(91)90098-J
http://www.ncbi.nlm.nih.gov/pubmed/2032290
http://dx.doi.org/10.1371/journal.pone.0039765
http://www.ncbi.nlm.nih.gov/pubmed/22745825
http://dx.doi.org/10.1016/j.pain.2014.08.001
http://www.ncbi.nlm.nih.gov/pubmed/25109670
http://dx.doi.org/10.1016/j.jneumeth.2014.08.009
http://www.ncbi.nlm.nih.gov/pubmed/25128723
http://dx.doi.org/10.1523/JNEUROSCI.3536-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17301163
http://dx.doi.org/10.1073/pnas.0901507106
http://www.ncbi.nlm.nih.gov/pubmed/19451647
http://dx.doi.org/10.1016/j.expneurol.2006.10.011
http://www.ncbi.nlm.nih.gov/pubmed/17188267
http://dx.doi.org/10.1016/0165-3806(94)90163-5
http://www.ncbi.nlm.nih.gov/pubmed/7842509
http://www.ncbi.nlm.nih.gov/pubmed/12196597


Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A (2007)
TRPM8 is required for cold sensation in mice. Neuron 54:371–378.
CrossRef Medline

Elitt CM, McIlwrath SL, Lawson JJ, Malin SA, Molliver DC, Cornuet PK,
Koerber HR, Davis BM, Albers KM (2006) Artemin overexpression in
skin enhances expression of TRPV1 and TRPA1 in cutaneous sensory
neurons and leads to behavioral sensitivity to heat and cold. J Neurosci
26:8578 – 8587. CrossRef Medline

Fyffe-Maricich SL, Karlo JC, Landreth GE, Miller RH (2011) The ERK2
mitogen-activated protein kinase regulates the timing of oligodendrocyte
differentiation. J Neurosci 31:843– 850. CrossRef Medline

Gao YJ, Ji RR (2008) Activation of JNK pathway in persistent pain. Neurosci
Lett 437:180 –183. CrossRef Medline

Golden JP, Hoshi M, Nassar MA, Enomoto H, Wood JN, Milbrandt J, Gereau
RW 4th, Johnson EM Jr, Jain S (2010) RET signaling is required for
survival and normal function of nonpeptidergic nociceptors. J Neurosci
30:3983–3994. CrossRef Medline

Ishii A, Fyffe-Maricich SL, Furusho M, Miller RH, Bansal R (2012) ERK1/
ERK2 MAPK signaling is required to increase myelin thickness indepen-
dent of oligodendrocyte differentiation and initiation of myelination.
J Neurosci 32:8855– 8864. CrossRef Medline

Ishii A, Furusho M, Bansal R (2013) Sustained activation of ERK1/2 MAPK
in oligodendrocytes and Schwann cells enhances myelin growth and stim-
ulates oligodendrocyte progenitor expansion. J Neurosci 33:175–186.
CrossRef Medline

Jackman A, Fitzgerald M (2000) Development of peripheral hindlimb and
central spinal cord innervation by subpopulations of dorsal root ganglion
cells in the embryonic rat. J Comp Neurol 418:281–298. CrossRef Medline

Ji RR, Baba H, Brenner GJ, Woolf CJ (1999) Nociceptive-specific activation
of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neu-
rosci 2:1114 –1119. CrossRef Medline

Ji RR, Befort K, Brenner GJ, Woolf CJ (2002) ERK MAP kinase activation in
superficial spinal cord neurons induces prodynorphin and NK-1 upregu-
lation and contributes to persistent inflammatory pain hypersensitivity.
J Neurosci 22:478 – 485. Medline

Karim F, Hu HJ, Adwanikar H, Kaplan D, Gereau RW 4th (2006) Impaired
inflammatory pain and thermal hyperalgesia in mice expressing neuron-
specific dominant negative mitogen activated protein kinase kinase
(MEK). Mol Pain 2:2. CrossRef Medline

Kessler JA, Bell WO, Black IB (1983) Interactions between the sympathetic
and sensory innervation of the iris. J Neurosci 3:1301–1307. Medline

Lawson SN, Waddell PJ (1991) Soma neurofilament immunoreactivity is
related to cell size and fibre conduction velocity in rat primary sensory
neurons. J Physiol 435:41– 63. CrossRef Medline

Lefloch R, Pouysségur J, Lenormand P (2008) Single and combined silenc-
ing of ERK1 and ERK2 reveals their positive contribution to growth sig-
naling depending on their expression levels. Mol Cell Biol 28:511–527.
CrossRef Medline

Lewin GR, Mendell LM (1994) Regulation of cutaneous C-fiber heat noci-
ceptors by nerve growth factor in the developing rat. J Neurophysiol
71:941–949. Medline

Malik-Hall M, Dina OA, Levine JD (2005) Primary afferent nociceptor
mechanisms mediating NGF-induced mechanical hyperalgesia. Eur
J Neurosci 21:3387–3394. CrossRef Medline

Marchi M, D’Antoni A, Formentini I, Parra R, Brambilla R, Ratto GM, Costa
M (2008) The N-terminal domain of ERK1 accounts for the functional
differences with ERK2. PLoS One 3:e3873. CrossRef Medline

Mazzucchelli C, Vantaggiato C, Ciamei A, Fasano S, Pakhotin P, Krezel W,
Welzl H, Wolfer DP, Pagès G, Valverde O, Marowsky A, Porrazzo A,
Orban PC, Maldonado R, Ehrengruber MU, Cestari V, Lipp HP, Chap-
man PF, Pouysségur J, Brambilla R (2002) Knock-out of ERK1 MAP
kinase enhances synaptic plasticity in the striatum and facilitates striatal-
mediated learning and memory. Neuron 34:807– 820. CrossRef Medline

McCoy ES, Taylor-Blake B, Street SE, Pribisko AL, Zheng J, Zylka MJ (2013)
Peptidergic CGRP� primary sensory neurons encode heat and itch and
tonically suppress sensitivity to cold. Neuron 78:138 –151. CrossRef
Medline

Melemedjian OK, Asiedu MN, Tillu DV, Peebles KA, Yan J, Ertz N, Dussor
GO, Price TJ (2010) IL-6- and NGF-induced rapid control of protein
synthesis and nociceptive plasticity via convergent signaling to the eIF4F
complex. J Neurosci 30:15113–15123. CrossRef Medline

Mizushima T, Obata K, Katsura H, Yamanaka H, Kobayashi K, Dai Y, Fu-

kuoka T, Tokunaga A, Mashimo T, Noguchi K (2006) Noxious cold
stimulation induces mitogen-activated protein kinase activation in tran-
sient receptor potential (TRP) channels TRPA1- and TRPM8-containing
small sensory neurons. Neuroscience 140:1337–1348. CrossRef Medline

Nekrasova T, Shive C, Gao Y, Kawamura K, Guardia R, Landreth G,
Forsthuber TG (2005) ERK1-deficient mice show normal T cell ef-
fector function and are highly susceptible to experimental autoimmune
encephalomyelitis. J Immunol 175:2374 –2380. CrossRef Medline

Newbern JM, Li X, Shoemaker SE, Zhou J, Zhong J, Wu Y, Bonder D, Hol-
lenback S, Coppola G, Geschwind DH, Landreth GE, Snider WD (2011)
Specific functions for ERK/MAPK signaling during PNS development.
Neuron 69:91–105. CrossRef Medline

Newbern J, Zhong J, Wickramasinghe RS, Li X, Wu Y, Samuels I, Cherosky N,
Karlo JC, O’Loughlin B, Wikenheiser J, Gargesha M, Doughman YQ,
Charron J, Ginty DD, Watanabe M, Saitta SC, Snider WD, Landreth GE
(2008) Mouse and human phenotypes indicate a critical conserved role
for ERK2 signaling in neural crest development. Proc Natl Acad Sci U S A
105:17115–17120. CrossRef Medline

Obata K, Yamanaka H, Dai Y, Tachibana T, Fukuoka T, Tokunaga A, Yo-
shikawa H, Noguchi K (2003) Differential activation of extracellular
signal-regulated protein kinase in primary afferent neurons regulates
brain-derived neurotrophic factor expression after peripheral inflamma-
tion and nerve injury. J Neurosci 23:4117– 4126. Medline

Obata K, Yamanaka H, Dai Y, Mizushima T, Fukuoka T, Tokunaga A, Nogu-
chi K (2004) Activation of extracellular signal-regulated protein kinase
in the dorsal root ganglion following inflammation near the nerve cell
body. Neuroscience 126:1011–1021. CrossRef Medline

Ossipov MH, Porreca F (2013) Animal models of experimental neuropathic
pain. In: Wall and Melzack’s textbook of pain, Ed 6 (McMahon SB, Kolt-
zenburg M, Tracey I, Turk DC, eds), pp 889 –900. Philadelphia: Elsevier.

Otsubo Y, Satoh Y, Kodama M, Araki Y, Satomoto M, Sakamoto E, Pagès G,
Pouysségur J, Endo S, Kazama T (2012) Mechanical allodynia but not
thermal hyperalgesia is impaired in mice deficient for ERK2 in the central
nervous system. Pain 153:2241–2252. CrossRef Medline
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