542 research outputs found

    Interaction-powered supernovae: Rise-time vs. peak-luminosity correlation and the shock-breakout velocity

    Get PDF
    Interaction of supernova (SN) ejecta with the optically thick circumstellar medium (CSM) of a progenitor star can result in a bright, long-lived shock breakout event. Candidates for such SNe include Type IIn and superluminous SNe. If some of these SNe are powered by interaction, then there should be a relation between their peak luminosity, bolometric light-curve rise time, and shock-breakout velocity. Given that the shock velocity during shock breakout is not measured, we expect a correlation, with a significant spread, between the rise time and the peak luminosity of these SNe. Here, we present a sample of 15 SNe IIn for which we have good constraints on their rise time and peak luminosity from observations obtained using the Palomar Transient Factory. We report on a possible correlation between the R-band rise time and peak luminosity of these SNe, with a false-alarm probability of 3%. Assuming that these SNe are powered by interaction, combining these observables and theory allows us to deduce lower limits on the shock-breakout velocity. The lower limits on the shock velocity we find are consistent with what is expected for SNe (i.e., ~10^4 km/s). This supports the suggestion that the early-time light curves of SNe IIn are caused by shock breakout in a dense CSM. We note that such a correlation can arise from other physical mechanisms. Performing such a test on other classes of SNe (e.g., superluminous SNe) can be used to rule out the interaction model for a class of events.Comment: Accepted to ApJ, 6 page

    The rise and fall of the Type Ib supernova iPTF13bvn - Not a massive Wolf-Rayet star

    Get PDF
    Context. We investigate iPTF13bvn, a core-collapse (CC) supernova (SN) in the nearby spiral galaxy NGC 5806. This object was discovered by the intermediate Palomar Transient Factory (iPTF) very close to the estimated explosion date and was classified as a stripped-envelope CC SN, likely of Type Ib. Furthermore, a possible progenitor detection in pre-explosion Hubble Space Telescope (HST) images was reported, making this the only SN Ib with such an identification. Based on the luminosity and color of the progenitor candidate, as well as on early-time spectra and photometry of the SN, it was argued that the progenitor candidate is consistent with a single, massive Wolf-Rayet (WR) star. Aims. We aim to confirm the progenitor detection, to robustly classify the SN using additional spectroscopy, and to investigate if our follow-up photometric and spectroscopic data on iPTF13bvn are consistent with a single-star WR progenitor scenario. Methods. We present a large set of observational data, consisting of multi-band light curves (UBVRI, g′r′i′z′) and optical spectra. We perform standard spectral line analysis to track the evolution of the SN ejecta. We also construct a bolometric light curve and perform hydrodynamical calculations to model this light curve to constrain the synthesized radioactive nickel mass and the total ejecta mass of the SN. Late-time photometry is analyzed to constrain the amount of oxygen. Furthermore, image registration of pre- and post-explosion HST images is performed. Results. Our HST astrometry confirms the location of the progenitor candidate of iPTF13bvn, and follow-up spectra securely classify this as a SN Ib. We use our hydrodynamical model to fit the observed bolometric light curve, estimating the total ejecta mass to be 1.9 M⊙ and the radioactive nickel mass to be 0.05 M⊙. The model fit requires the nickel synthesized in the explosion to be highly mixed out in the ejecta. We also find that the late-time nebular r′-band luminosity is not consistent with predictions based on the expected oxygen nucleosynthesis in very massive stars. Conclusions. We find that our bolometric light curve of iPTF13bvn is not consistent with the previously proposed single massive WR-star progenitor scenario. The total ejecta mass and, in particular, the late-time oxygen emission are both significantly lower than what would be expected from a single WR progenitor with a main-sequence mass of at least 30 M⊙

    Fatigue evaluation in maintenance and assembly operations by digital human simulation

    Get PDF
    Virtual human techniques have been used a lot in industrial design in order to consider human factors and ergonomics as early as possible. The physical status (the physical capacity of virtual human) has been mostly treated as invariable in the current available human simulation tools, while indeed the physical capacity varies along time in an operation and the change of the physical capacity depends on the history of the work as well. Virtual Human Status is proposed in this paper in order to assess the difficulty of manual handling operations, especially from the physical perspective. The decrease of the physical capacity before and after an operation is used as an index to indicate the work difficulty. The reduction of physical strength is simulated in a theoretical approach on the basis of a fatigue model in which fatigue resistances of different muscle groups were regressed from 24 existing maximum endurance time (MET) models. A framework based on digital human modeling technique is established to realize the comparison of physical status. An assembly case in airplane assembly is simulated and analyzed under the framework. The endurance time and the decrease of the joint moment strengths are simulated. The experimental result in simulated operations under laboratory conditions confirms the feasibility of the theoretical approach

    iPTF16fnl: a faint and fast tidal disruption event in an E+A galaxy

    Full text link
    We present ground-based and \textit{Swift} observations of iPTF16fnl, a likely tidal disruption event (TDE) discovered by the intermediate Palomar Transient Factory (iPTF) survey at 66.6 Mpc. The lightcurve of the object peaked at absolute Mg=17.2M_g=-17.2 mag. The maximum bolometric luminosity (from optical and UV) was Lp  (1.0±0.15)×1043L_p~\simeq~(1.0\,\pm\,0.15) \times 10^{43} erg/s, an order of magnitude fainter than any other optical TDE discovered so far. The luminosity in the first 60 days is consistent with an exponential decay, with Le(tt0)/τL \propto e^{-(t-t_0)/\tau}, where t0t_0=~57631.0 (MJD) and τ15\tau\simeq 15 days. The X-ray shows a marginal detection at LX=2.41.11.9×1039L_X=2.4^{1.9}_{-1.1}\times 10^{39} erg/s (\textit{Swift} X-ray Telescope). No radio counterpart was detected down to 3σ\sigma, providing upper limits for monochromatic radio luminosity of νLν<2.3×1036\nu L_{\nu} < 2.3\times10^{36} erg/s and νLν<1.7×1037\nu L_{\nu}<1.7\times 10^{37} erg/s (VLA, 6.1 and 22 GHz). The blackbody temperature, obtained from combined \textit{Swift} UV and optical photometry, shows a constant value of 19,000 K. The transient spectrum at peak is characterized by broad He II and Hα\alpha emission lines, with an FWHM of about 14,000 km/s and 10,000 km/s respectively. He I lines are also detected at λλ\lambda\lambda 5875 and 6678. The spectrum of the host is dominated by strong Balmer absorption lines, which are consistent with a post-starburst (E+A) galaxy with an age of \sim650 Myr and solar metallicity. The characteristics of iPTF16fnl make it an outlier on both luminosity and decay timescales, as compared to other optically selected TDEs. The discovery of such a faint optical event suggests a higher rate of tidal disruptions, as low luminosity events may have gone unnoticed in previous searches.Comment: 14 pages, 11 figures, accepted for publication in Ap

    UV to near-IR observations of the DART-Dimorphos collision

    Full text link
    The impact of the Double Asteroid Redirection Test (DART) spacecraft with Dimorphos allows us to study asteroid collision physics, including momentum transfer, the ejecta properties, and the visibility of such events in the Solar System. We report observations of the DART impact in the ultraviolet (UV), visible light, and near-infrared (IR) wavelengths. The observations support the existence of at least two separate components of the ejecta: a fast and a slow component. The fast-ejecta component is composed of a gaseous phase, moving at about 1.6 km/s with a mass of <10^4 kg. The fast ejecta is detected in the UV and visible light, but not in the near-IR zz-band observations. Fitting a simplified optical thickness model to these observations allows us to constrain some of the properties of the fast ejecta, including its scattering efficiency and the opacity of the gas. The slow ejecta component is moving at typical velocities of up to about 10 m/s. It is composed of micrometer-size particles, that have a scattering efficiency, at the direction of the observer, of the order of 10^-3 and a total mass of about 10^6 kg. The larger particles in the slow ejecta, whose size is bound to be in the range between ~1 mm to ~1 m, likely have a scattering efficiency larger than that of the pre-impact Didymos system.Comment: Submitted to MNRA

    The bolometric light curves and physical parameters of stripped-envelope supernovae

    Get PDF
    The optical and optical/near-infrared pseudobolometric light curves of 84 stripped-envelope supernovae (SNe) are constructed using a consistent method and a standard cosmology. The light curves are analysed to derive temporal characteristics and peak luminosity Lp, enabling the construction of a luminosity function. Subsequently, the mass of 56Ni synthesised in the explosion, along with the ratio of ejecta mass to ejecta kinetic energy, are found. Analysis shows that host-galaxy extinction is an important factor in accurately determining luminosity values as it is significantly greater than Galactic extinction in most cases. It is found that broad-lined SNe Ic (SNe Ic-BL) and gamma-ray burst SNe are the most luminous subtypes with a combined median Lp, in erg s−1, of log(Lp) = 42.99 compared to 42.51 for SNe Ic, 42.50 for SNe Ib, and 42.36 for SNe IIb. It is also found that SNe Ic-BL synthesise approximately twice the amount of 56Ni compared with SNe Ic, Ib, and IIb, with median MNi = 0.34, 0.16, 0.14, and 0.11 M⊙, respectively. SNe Ic-BL, and to a lesser extent SNe Ic, typically rise from Lp/2 to Lp more quickly than SNe Ib/IIb; consequently, their light curves are not as broad

    Observational and Physical Classification of Supernovae

    Full text link
    This chapter describes the current classification scheme of supernovae (SNe). This scheme has evolved over many decades and now includes numerous SN Types and sub-types. Many of these are universally recognized, while there are controversies regarding the definitions, membership and even the names of some sub-classes; we will try to review here the commonly-used nomenclature, noting the main variants when possible. SN Types are defined according to observational properties; mostly visible-light spectra near maximum light, as well as according to their photometric properties. However, a long-term goal of SN classification is to associate observationally-defined classes with specific physical explosive phenomena. We show here that this aspiration is now finally coming to fruition, and we establish the SN classification scheme upon direct observational evidence connecting SN groups with specific progenitor stars. Observationally, the broad class of Type II SNe contains objects showing strong spectroscopic signatures of hydrogen, while objects lacking such signatures are of Type I, which is further divided to numerous subclasses. Recently a class of super-luminous SNe (SLSNe, typically 10 times more luminous than standard events) has been identified, and it is discussed. We end this chapter by briefly describing a proposed alternative classification scheme that is inspired by the stellar classification system. This system presents our emerging physical understanding of SN explosions, while clearly separating robust observational properties from physical inferences that can be debated. This new system is quantitative, and naturally deals with events distributed along a continuum, rather than being strictly divided into discrete classes. Thus, it may be more suitable to the coming era where SN numbers will quickly expand from a few thousands to millions of events.Comment: Extended final draft of a chapter in the "SN Handbook". Comments most welcom

    PTF11kx: A Type-Ia Supernova with a Symbiotic Nova Progenitor

    Full text link
    There is a consensus that Type-Ia supernovae (SNe Ia) arise from the thermonuclear explosion of white dwarf stars that accrete matter from a binary companion. However, direct observation of SN Ia progenitors is lacking, and the precise nature of the binary companion remains uncertain. A temporal series of high-resolution optical spectra of the SN Ia PTF 11kx reveals a complex circumstellar environment that provides an unprecedentedly detailed view of the progenitor system. Multiple shells of circumsteller are detected and the SN ejecta are seen to interact with circumstellar material (CSM) starting 59 days after the explosion. These features are best described by a symbiotic nova progenitor, similar to RS Ophiuchi.Comment: 27 pages, 5 figures. In pres

    Heart failure during the COVID-19 pandemic: clinical, diagnostic, management, and organizational dilemmas

    Full text link
    The coronavirus 2019 (COVID-19) infection pandemic has affected the care of patients with heart failure (HF). Several consensus documents describe the appropriate diagnostic algorithm and treatment approach for patients with HF and associated COVID-19 infection. However, few questions about the mechanisms by which COVID can exacerbate HF in patients with high-risk (Stage B) or symptomatic HF (Stage C) remain unanswered. Therefore, the type of HF occurring during infection is poorly investigated. The diagnostic differentiation and management should be focused on the identification of the HF phenotype, underlying causes, and subsequent tailored therapy. In this framework, the relationship existing between COVID and onset of acute decompensated HF, isolated right HF, and cardiogenic shock is questioned, and the specific management is mainly based on local hospital organization rather than a standardized model. Similarly, some specific populations such as advanced HF, heart transplant, patients with left ventricular assist device (LVAD), or valve disease remain under investigated. In this systematic review, we examine recent advances regarding the relationships between HF and COVID-19 pandemic with respect to epidemiology, pathogenetic mechanisms, and differential diagnosis. Also, according to the recent HF guidelines definition, we highlight different clinical profile identification, pointing out the main concerns in understudied HF populations.© 2022 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology

    Hubble Space Telescope studies of low-redshift Type Ia supernovae: Evolution with redshift and ultraviolet spectral trends

    Get PDF
    We present an analysis of the maximum light, near ultraviolet (NUV; 2900-5500 A) spectra of 32 low redshift (0.001<z<0.08) Type Ia supernovae (SNe Ia), obtained with the Hubble Space Telescope (HST). We combine this spectroscopic sample with high-quality gri light curves obtained with robotic telescopes to measure photometric parameters, such as stretch, optical colour, and brightness. By comparing our data to a comparable sample of SNe Ia at intermediate-z (0.4<z<0.9), we detect modest spectral evolution (3-sigma), in the sense that our mean low-z NUV spectrum has a depressed flux compared to its intermediate-z counterpart. We also see a strongly increased dispersion about the mean with decreasing wavelength, confirming the results of earlier surveys. These trends are consistent with changes in metallicity as predicted by contemporary SN Ia spectral models. We also examine the properties of various NUV spectral diagnostics in the individual spectra. We find a general correlation between stretch and the velocity (or position) of many NUV spectral features. In particular, we observe that higher stretch SNe have larger Ca II H&K velocities, that also correlate with host galaxy stellar mass. This latter trend is probably driven by the well-established correlation between stretch and stellar mass. We find no trends between UV spectral features and optical colour. Mean spectra constructed according to whether the SN has a positive or negative Hubble residual show very little difference at NUV wavelengths, indicating that the NUV evolution and variation we identify do not directly correlate with Hubble residuals. Our work confirms and strengthens earlier conclusions regarding the complex behaviour of SNe Ia in the NUV spectral region, but suggests the correlations we find are more useful in constraining progenitor models than improving the use of SNe Ia as cosmological probes.Comment: 22 pages, 14 figures, accepted in MNRAS with minor changes - Spectra are available on WISeREP, http://www.weizmann.ac.il/astrophysics/wiserep
    corecore