9 research outputs found

    Atmospheric phosphorus deposition in a near-coastal rural site in the NE Iberian Peninsula and its role in marine productivity

    Get PDF
    In this study, African red-rains were collected at Montseny (NE Spain) on a weekly basis and analyzed for total particulate phosphorus (TPP), total dissolved P (TDP) and soluble reactive P (SRP) for the period 1996-2008. Wet and dry weekly deposition of TPP was analyzed for all provenances in 2002-2003. In this period, African sources were found to contribute 66% of the 576 μmol m⁻² y⁻¹ of total particulate phosphorus (TPP) deposited in Montseny, split almost evenly between dry and wet deposition. Measurement of this dry deposition further allowed a direct determination of deposition velocity (Vd), which suggested significant depositional differences between African (Vd = 3.1 ± 0.80 cm s⁻¹) and non-African events (Vd = 1.07 ± 0.13 cm s⁻¹). Measurement of TDP concentrations during the African rains suggests a solubility of 11.2% TPP. SRP solubility was lower (2.2%), highlighting the importance of understanding the composition of the atmospherically derived P component. Samples were collected 25 km from the Mediterranean coast and were assumed to represent the atmospheric P input to coastal waters. On an annual basis, atmospheric-derived soluble P contributed <1% of annual new primary production in the western Mediterranean. However, one strong African dust event (22-27 May, 2008) accounted for 24-33 % of the atmospheric P-induced annual new production. These results highlight the potential biogeochemical importance of seasonality, source, and composition of aerosols deposited in the Western Mediterranean Sea

    Fukushima Daiichi-derived radionuclides in the ocean: Transport, fate, and impacts

    Get PDF
    The events that followed the Tohoku earthquake and tsunami on March 11, 2011, included the loss of power and overheating at the Fukushima Daiichi nuclear power plants, which led to extensive releases of radioactive gases, volatiles, and liquids, particularly to the coastal ocean. The fate of these radionuclides depends in large part on their oceanic geochemistry, physical processes, and biological uptake. Whereas radioactivity on land can be resampled and its distribution mapped, releases to the marine environment are harder to characterize owing to variability in ocean currents and the general challenges of sampling at sea. Five years later, it is appropriate to review what happened in terms of the sources, transport, and fate of these radionuclides in the ocean. In addition to the oceanic behavior of these contaminants, this review considers the potential health effects and societal impacts

    Genetic Testing to Inform Epilepsy Treatment Management From an International Study of Clinical Practice

    Get PDF
    IMPORTANCE: It is currently unknown how often and in which ways a genetic diagnosis given to a patient with epilepsy is associated with clinical management and outcomes. OBJECTIVE: To evaluate how genetic diagnoses in patients with epilepsy are associated with clinical management and outcomes. DESIGN, SETTING, AND PARTICIPANTS: This was a retrospective cross-sectional study of patients referred for multigene panel testing between March 18, 2016, and August 3, 2020, with outcomes reported between May and November 2020. The study setting included a commercial genetic testing laboratory and multicenter clinical practices. Patients with epilepsy, regardless of sociodemographic features, who received a pathogenic/likely pathogenic (P/LP) variant were included in the study. Case report forms were completed by all health care professionals. EXPOSURES: Genetic test results. MAIN OUTCOMES AND MEASURES: Clinical management changes after a genetic diagnosis (ie, 1 P/LP variant in autosomal dominant and X-linked diseases; 2 P/LP variants in autosomal recessive diseases) and subsequent patient outcomes as reported by health care professionals on case report forms. RESULTS: Among 418 patients, median (IQR) age at the time of testing was 4 (1-10) years, with an age range of 0 to 52 years, and 53.8% (n = 225) were female individuals. The mean (SD) time from a genetic test order to case report form completion was 595 (368) days (range, 27-1673 days). A genetic diagnosis was associated with changes in clinical management for 208 patients (49.8%) and usually (81.7% of the time) within 3 months of receiving the result. The most common clinical management changes were the addition of a new medication (78 [21.7%]), the initiation of medication (51 [14.2%]), the referral of a patient to a specialist (48 [13.4%]), vigilance for subclinical or extraneurological disease features (46 [12.8%]), and the cessation of a medication (42 [11.7%]). Among 167 patients with follow-up clinical information available (mean [SD] time, 584 [365] days), 125 (74.9%) reported positive outcomes, 108 (64.7%) reported reduction or elimination of seizures, 37 (22.2%) had decreases in the severity of other clinical signs, and 11 (6.6%) had reduced medication adverse effects. A few patients reported worsening of outcomes, including a decline in their condition (20 [12.0%]), increased seizure frequency (6 [3.6%]), and adverse medication effects (3 [1.8%]). No clinical management changes were reported for 178 patients (42.6%). CONCLUSIONS AND RELEVANCE: Results of this cross-sectional study suggest that genetic testing of individuals with epilepsy may be materially associated with clinical decision-making and improved patient outcomes

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Atmospheric phosphorus deposition in a near-coastal rural site in the NE Iberian Peninsula and its role in marine productivity

    No full text
    In this study, African red-rains were collected at Montseny (NE Spain) on a weekly basis and analyzed for total particulate phosphorus (TPP), total dissolved P (TDP) and soluble reactive P (SRP) for the period 1996-2008. Wet and dry weekly deposition of TPP was analyzed for all provenances in 2002-2003. In this period, African sources were found to contribute 66% of the 576 μmol m⁻² y⁻¹ of total particulate phosphorus (TPP) deposited in Montseny, split almost evenly between dry and wet deposition. Measurement of this dry deposition further allowed a direct determination of deposition velocity (Vd), which suggested significant depositional differences between African (Vd = 3.1 ± 0.80 cm s⁻¹) and non-African events (Vd = 1.07 ± 0.13 cm s⁻¹). Measurement of TDP concentrations during the African rains suggests a solubility of 11.2% TPP. SRP solubility was lower (2.2%), highlighting the importance of understanding the composition of the atmospherically derived P component. Samples were collected 25 km from the Mediterranean coast and were assumed to represent the atmospheric P input to coastal waters. On an annual basis, atmospheric-derived soluble P contributed <1% of annual new primary production in the western Mediterranean. However, one strong African dust event (22-27 May, 2008) accounted for 24-33 % of the atmospheric P-induced annual new production. These results highlight the potential biogeochemical importance of seasonality, source, and composition of aerosols deposited in the Western Mediterranean Sea

    Fukushima daiichi-derived radionuclides in the ocean : transport, fate, and impacts

    No full text
    Unidad de excelencia María de Maeztu MdM-2015-0552The events that followed the Tohoku earthquake and tsunami on March 11, 2011, included the loss of power and overheating at the Fukushima Daiichi nuclear power plants, which led to extensive releases of radioactive gases, volatiles, and liquids, particularly to the coastal ocean. The fate of these radionuclides depends in large part on their oceanic geochemistry, physical processes, and biological uptake. Whereas radioactivity on land can be resampled and its distribution mapped, releases to the marine environment are harder to characterize owing to variability in ocean currents and the general challenges of sampling at sea. Five years later, it is appropriate to review what happened in terms of the sources, transport, and fate of these radionuclides in the ocean. In addition to the oceanic behavior of these contaminants, this review considers the potential health effects and societal impacts

    SOS-Based Stability Analysis of Polynomial Fuzzy-Model-Based Control Systems Via Polynomial Membership Functions

    Get PDF
    Altres ajuts: "Obra Social la Caixa" (LCF/BQ/ES14/10320004) i Blue Forest Project Australian Research Council LIEF Project (LE170100219)Unidad de excelencia María de Maeztu MdM-2015-0552The database compiles data (in Arias-Ortiz et al. 2020) on biogeochemical characteristics (density, organic carbon and total nitrogen, stable carbon and nitrogen isotopes and sediment grain size) of mangrove forest soils in Tsimipaika Bay, Madagascar. Pb-210 concentrations of the first 40 cm are included. The dataset compiles data for a total of 10 cores (5 cores from an intact forest and 5 from a deforested area) along with surface water dissolved organic carbon (DOC) concentrations measured at 8 stations. Enquiries about the dataset may be sent to Ariane Arias-Ortiz: [email protected]

    P-NEXFS analysis of aerosol phosphorus delivered to the Mediterranean Sea

    No full text
    Biological productivity in many ocean regions is controlled by the availability of the nutrient phosphorus. In the Mediterranean Sea, aerosol deposition is a key source of phosphorus and understanding its composition is critical for determining its potential bioavailability. Aerosol phosphorus was investigated in European and North African air masses using phosphorus near-edge X-ray fluorescence spectroscopy (P-NEXFS). These air masses are the main source of aerosol deposition to the Mediterranean Sea. We show that European aerosols are a significant source of soluble phosphorus to the Mediterranean Sea. European aerosols deliver on average 3.5 times more soluble phosphorus than North African aerosols and furthermore are dominated by organic phosphorus compounds. The ultimate source of organic phosphorus does not stem from common primary emission sources. Rather, phosphorus associated with bacteria best explains the presence of organic phosphorus in Mediterranean aerosols

    Losses of Soil Organic Carbon with Deforestation in Mangroves of Madagascar

    No full text
    Unidad de excelencia María de Maeztu CEX2019-000940-MAltres ajuts: "Obra Social la Caixa" (LCF/BQ/ES14/10320004) i Blue Forest Project Australian Research Council LIEF Project (LE170100219)Global mangrove deforestation has resulted in substantial CO2 emissions to the atmosphere, but the extent of emissions from soil organic carbon (C) loss remains difficult to assess. Here, we sampled five intact and five deforested mangrove plots from Tsimipaika Bay, Madagascar, to examine the loss of soil C in the 10 years since deforestation. We estimated tree biomass and analyzed grain size, 210Pb activities, organic C and total nitrogen (N) and their stable isotopes in soils as well as dissolved organic C in surface waters. Deforested soils revealed evidence of disturbance in the upper 14 g cm−2 (~40 cm) when compared to reference intact soils, indicated by lower porosity, higher dry bulk density, an order of magnitude higher soil mixing and loss of C and N despite no significant soil erosion. Although C loss from biomass was unequivocal and was estimated at 130 Mg C ha−1, the C loss from soils was more difficult to assess given the large heterogeneity of intact forest soils. We estimated that the loss of C due to mangrove clearing and soil exposure over 10 years was equivalent to about 20% of the upper meter soil C stock, and about 45% of the C stock accumulated during the last century. Soil C loss rate was 4.5 times higher than the C sequestration rate in reference intact soils. These results emphasize the importance of mangrove conservation for CO2 emissions mitigation, as they suggest that deforestation-C losses will take substantially longer to offset with mangrove restoration
    corecore