15 research outputs found
Some Jewish Reflections on The Splendor of Truth
Pope John Paul\u27s encyclical deals with themes of utmost concern to all of us. It confronts many of the questions of ethics and morality that address the ethical malaise pervading our contemporary society and is a profound analysis and evaluation of modernity offering a significant and comprehensive alternative. As such it not only concerns the faithful among the Catholic Church but also all individuals concerned with ethical questions.
The lessons it depicts and the doctrines it sets forth are meant as a guide to all individuals who are concerned with what makes for true satisfaction and an abiding good for human beings and for society.
There is much in The Splendor of Truth that is consistent with Jewish teaching and in many ways Judaism and Catholicism stand on common ground
Structural Elements Regulating Amyloidogenesis: A Cholinesterase Model System
Polymerization into amyloid fibrils is a crucial step in the pathogenesis of neurodegenerative syndromes. Amyloid assembly is governed by properties of the sequence backbone and specific side-chain interactions, since fibrils from unrelated sequences possess similar structures and morphologies. Therefore, characterization of the structural determinants driving amyloid aggregation is of fundamental importance. We investigated the forces involved in the amyloid assembly of a model peptide derived from the oligomerization domain of acetylcholinesterase (AChE), AChE586-599, through the effect of single point mutations on β-sheet propensity, conformation, fibrilization, surfactant activity, oligomerization and fibril morphology. AChE586-599 was chosen due to its fibrilization tractability and AChE involvement in Alzheimer's disease. The results revealed how specific regions and residues can control AChE586-599 assembly. Hydrophobic and/or aromatic residues were crucial for maintaining a high β-strand propensity, for the conformational transition to β-sheet, and for the first stage of aggregation. We also demonstrated that positively charged side-chains might be involved in electrostatic interactions, which could control the transition to β-sheet, the oligomerization and assembly stability. Further interactions were also found to participate in the assembly. We showed that some residues were important for AChE586-599 surfactant activity and that amyloid assembly might preferentially occur at an air-water interface. Consistently with the experimental observations and assembly models for other amyloid systems, we propose a model for AChE586-599 assembly in which a steric-zipper formed through specific interactions (hydrophobic, electrostatic, cation-π, SH-aromatic, metal chelation and polar-polar) would maintain the β-sheets together. We also propose that the stacking between the strands in the β-sheets along the fiber axis could be stabilized through π-π interactions and metal chelation. The dissection of the specific molecular recognition driving AChE586-599 amyloid assembly has provided further knowledge on such poorly understood and complicated process, which could be applied to protein folding and the targeting of amyloid diseases
Our Age: The Historic New Era of Christian-Jewish Understanding
The two Jewish rabbis explain what the Catholic Church is doing to rid itself and the world of antisemitism. They offer it as a model to follow.
Foreword by John Cardinal O\u27Connor
Self-Assembly of Phenylalanine Oligopeptides: Insights from Experiments and Simulations
Studies of peptide-based nanostructures provide general insights into biomolecular self-assembly and can lead material engineering toward technological applications. The diphenylalanine peptide (FF) self-assembles into discrete, hollow, well ordered nanotubes, and its derivatives form nanoassemblies of various morphologies. Here we demonstrate for the first time, to our knowledge, the formation of planar nanostructures with ß-sheet content by the triphenylalanine peptide (FFF). We characterize these structures using various microscopy and spectroscopy techniques. We also obtain insights into the interactions and structural properties of the FF and FFF nanostructures by 0.4-µs, implicit-solvent, replica-exchange, molecular-dynamics simulations of aqueous FF and FFF solutions. In the simulations the peptides form aggregates, which often contain open or ring-like peptide networks, as well as elementary and network-containing structures with ß-sheet characteristics. The networks are stabilized by polar and nonpolar interactions, and by the surrounding aggregate. In particular, the charged termini of neighbor peptides are involved in hydrogen-bonding interactions and their aromatic side chains form ¿T-shaped¿ contacts, as in three-dimensional FF crystals. These interactions may assist the FF and FFF self-assembly at the early stage, and may also stabilize the mature nanostructures. The FFF peptides have higher network propensities and increased aggregate stabilities with respect to FF, which can be interpreted energetically