15 research outputs found
Genetic contributors to risk of schizophrenia in the presence of a 22q11.2 deletion
Schizophrenia occurs in about one in four individuals with 22q11.2 deletion syndrome (22q11.2DS). The aim of this International Brain and Behavior 22q11.2DS Consortium (IBBC) study was to identify genetic factors that contribute to schizophrenia, in addition to the ~20-fold increased risk conveyed by the 22q11.2 deletion. Using whole-genome sequencing data from 519 unrelated individuals with 22q11.2DS, we conducted genome-wide comparisons of common and rare variants between those with schizophrenia and those with no psychotic disorder at age ≥25 years. Available microarray data enabled direct comparison of polygenic risk for schizophrenia between 22q11.2DS and independent population samples with no 22q11.2 deletion, with and without schizophrenia (total n = 35,182). Polygenic risk for schizophrenia within 22q11.2DS was significantly greater for those with schizophrenia (padj = 6.73 × 10−6). Novel reciprocal case–control comparisons between the 22q11.2DS and population-based cohorts showed that polygenic risk score was significantly greater in individuals with psychotic illness, regardless of the presence of the 22q11.2 deletion. Within the 22q11.2DS cohort, results of gene-set analyses showed some support for rare variants affecting synaptic genes. No common or rare variants within the 22q11.2 deletion region were significantly associated with schizophrenia. These findings suggest that in addition to the deletion conferring a greatly increased risk to schizophrenia, the risk is higher when the 22q11.2 deletion and common polygenic risk factors that contribute to schizophrenia in the general population are both present
Dissociating Bottom-Up and Top-Down Mechanisms in the Cortico-Limbic System during Emotion Processing
International audienceno abstrac
Antidepressive effects of targeting ELK-1 signal transduction
International audienceDepression, a devastating psychiatric disorder, is a leadingcause of disability worldwide. Current antidepressants addressspecific symptoms of the disease, but there is vast roomfor improvement1. In this respect, new compounds that actbeyond classical antidepressants to target signal transductionpathways governing synaptic plasticity and cellular resilienceare highly warranted2–4. The extracellular signal–regulatedkinase (ERK) pathway is implicated in mood regulation5–7, butits pleiotropic functions and lack of target specificity prohibitoptimal drug development. Here, we identified the transcriptionfactor ELK-1, an ERK downstream partner8, as a specificsignaling module in the pathophysiology and treatment ofdepression that can be targeted independently of ERK. ELK1mRNA was upregulated in postmortem hippocampal tissuesfrom depressed suicides; in blood samples from depressedindividuals, failure to reduce ELK1 expression was associatedwith resistance to treatment. In mice, hippocampal ELK-1 overexpressionper se produced depressive behaviors; conversely,the selective inhibition of ELK-1 activation prevented depression-like molecular, plasticity and behavioral states inducedby stress. Our work stresses the importance of target selectivityfor a successful approach for signal-transduction-basedantidepressants, singles out ELK-1 as a depression-relevanttransducer downstream of ERK and brings proof-of-conceptevidence for the druggability of ELK-1
Predictors of functional impairment in bipolar disorder: Results from 13 cohorts from seven countries by the global bipolar cohort collaborative
Objectives
Persistent functional impairment is common in bipolar disorder (BD) and is influenced by a number of demographic, clinical, and cognitive features. The goal of this project was to estimate and compare the influence of key factors on community function in multiple cohorts of well-characterized samples of individuals with BD.
Methods
Thirteen cohorts from 7 countries included n = 5882 individuals with BD across multiple sites. The statistical approach consisted of a systematic uniform application of analyses across sites. Each site performed a logistic regression analysis with empirically derived “higher versus lower function” as the dependent variable and selected clinical and demographic variables as predictors.
Results
We found high rates of functional impairment, ranging from 41 to 75%. Lower community functioning was associated with depressive symptoms in 10 of 12 of the cohorts that included this variable in the analysis. Lower levels of education, a greater number of prior mood episodes, the presence of a comorbid substance use disorder, and a greater total number of psychotropic medications were also associated with low functioning.
Conclusions
The bipolar clinical research community is poised to work together to characterize the multi-dimensional contributors to impairment and address the barriers that impede patients' complete recovery. We must also identify the core features which enable many to thrive and live successfully with BD. A large-scale, worldwide, prospective longitudinal study focused squarely on BD and its heterogeneous presentations will serve as a platform for discovery and promote major advances toward optimizing outcomes for every individual with this illness
Decreased telomere length in a subgroup of young individuals with bipolar disorders: replication in the FACE-BD cohort and association with the shelterin component POT1
International audienceBipolar disorder (BD) has been associated with premature cellular aging with shortened telomere length (TL) as compared to the general population. We recently identified a subgroup of young individuals with prematurely shortened TL. The aims of the present study were to replicate this observation in a larger sample and analyze the expression levels of genes associated with age or TL in a subsample of these individuals. TL was measured on peripheral blood DNA using quantitative polymerase chain reaction in a sample of 542 individuals with BD and clustering analyses were performed. Gene expression level of 29 genes, associated with aging or with telomere maintenance, was analyzed in RNA samples from a subsample of 129 individuals. Clustering analyses identified a group of young individuals (mean age 29.64 years), with shorter TL. None of the tested clinical variables were significantly associated with this subgroup. Gene expression level analyses showed significant downregulation of MYC, POT1, and CD27 in the prematurely aged young individuals compared to the young individuals with longer TL. After adjustment only POT1 remained significantly differentially expressed between the two groups of young individuals. This study confirms the existence of a subgroup of young individuals with BD with shortened TL. The observed decrease of POT1 expression level suggests a newly described cellular mechanism in individuals with BD, that may contribute to telomere shortening