68 research outputs found

    Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay

    Get PDF
    Photoreception by vertebrates enables both image-forming vision and non-image-forming responses such as circadian photoentrainment. Over the recent years, distinct non-rod non-cone photopigments have been found to support circadian photoreception in diverse species. By allowing specialization to this sensory task a selective advantage is implied, but the nature of that specialization remains elusive. We have used the presence of distinct rod opsin genes specialized to either image-forming (retinal rod opsin) or non-image-forming (pineal exo-rod opsin) photoreception in ray-finned fish (Actinopterygii) to gain a unique insight into this problem. A comparison of biochemical features for these paralogous opsins in two model teleosts, Fugu pufferfish (Takifugu rubripes) and zebrafish (Danio rerio), reveals striking differences. While spectral sensitivity is largely unaltered by specialization to the pineal environment, in other aspects exo-rod opsins exhibit a behavior that is quite distinct from the cardinal features of the rod opsin family. While they display a similar thermal stability, they show a greater than tenfold reduction in the lifetime of the signaling active Meta II photoproduct. We show that these features reflect structural changes in retinal association domains of helices 3 and 5 but, interestingly, not at either of the two residues known to define these characteristics in cone opsins. Our findings suggest that the requirements of non-image-forming photoreception have lead exo-rod opsin to adopt a characteristic that seemingly favors efficient bleach recovery but not at the expense of absolute sensitivity

    An estimate of the number of tropical tree species

    Get PDF
    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e. at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa

    Phylogenetic classification of the world's tropical forests

    Get PDF
    Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests.</p

    A review of the neural mechanisms of action and clinical efficiency of Riluzole in treating Amyotrophic Lateral Sclerosis: What have we learned in the last decade?

    No full text
    Amyotrophic lateral sclerosis (ALS) is a devastating and fatal neurodegenerative disease of adults which preferentially attacks the neuromotor system. Riluzole has been used as the only approved treatment for amyotrophic lateral sclerosis since 1995, but its mechanism(s) of action in slowing the progression of this disease remain obscure. Searching PubMed for "riluzole" found 705 articles published between January 1996 and June 2009. A systematic review of this literature found that riluzole had a wide range of effects on factors influencing neural activity in general, and the neuromotor system in particular. These effects occurred over a large dose range ( 1 mM). Reported neural effects of riluzole included (in approximate ascending order of dose range): inhibition of persistent Na+ current = inhibition of repetitive firing < potentiation of calcium-dependent K+ current < inhibition of neurotransmitter release < inhibition of fast Na+ current < inhibition of voltage-gated Ca2+ current = promotion of neuronal survival or growth factors < inhibition of voltage-gated K+ current = modulation of two-pore K+ current = modulation of ligand-gated neurotransmitter receptors = potentiation of glutamate transporters. Only the first four of these effects commonly occurred at clinically relevant concentrations of riluzole (plasma levels of 1-2 mu M with three- to four-fold higher concentrations in brain tissue). Treatment of human ALS patients or transgenic rodent models of ALS with riluzole most commonly produced a modest but significant extension of lifespan. Riluzole treatment was well tolerated in humans and animals. In animals, despite in vitro evidence that riluzole may inhibit rhythmic motor behaviors, in vivo administration of riluzole produced relatively minor effects on normal respiration parameters, but inhibited hypoxia-induced gasping. This effect may have implications for the management of hypoventilation and sleep-disordered breathing during end-stage ALS in humans

    Penetratin peptide potentiates endogenous calcium-activated chloride currents in Xenopus oocytes

    No full text
    Calcium-activated chloride currents (CaCCs) are required for epithelial electrolyte and fluid secretion, fertilization, sensory transduction and excitability of neurons and smooth muscle. Defolliculated Xenopus oocytes express a robust CaCC formed by a heterologous group of proteins including transmembrane protein 16A (TMEM16A) and bestrophins. Penetratin, a 17-amino acid peptide, potentiated endogenous oocyte CaCCs by ~50-fold at 10 μM, recorded using a two-electrode voltage clamp. CaCC potentiation was rapid and dose-dependent (EC50=3.2 μM). Penetratin-potentiated currents reversed at -18 mV and were dependent on the extracellular divalent cations present, showing positive regulation by Ca2+ and Mg2+ but effective block by Zn2+ (IC50=5.9 μM). Extracellular Cd2+, Cu2+ and Ba2+ resulted in bimodal responses: CaCC inhibition at low but potentiation at high concentrations. Intracellular BAPTA injection, which prevents activation of CaCCs, and the Cl- channel blockers niflumic acid and DIDS significantly reduced potentiation. In contrast, the K+ channel blockers Cs+, TEA, tertiapin-Q and halothane had no significant effect. This pharmacological profile is consistent with penetratin potentiation of zinc-sensitive CaCCs that are activated by influx of extracellular Ca2+. These findings may stimulate basic research on CaCCs in native cells and may lead to development of novel therapeutics targeting disorders caused by insufficient chloride secretion
    corecore